Course name: Biostatistics and DoE for Pharmaceutical Applications

Course Coordinator: Dr. SouvikBasak, Assoc. Professor, BCRCP

Course Level: Certificate Course

Course Objective: To make students understand Biostatistics and DoE in Pharmaceutical Profession and Industry and Enabling them apply the techniques in relevant fields

Total no. of Units: 20

Total no. of classes: 20 + 4 (Exam)

Total Credit Hours: 40

Mode of teaching: Online

Resourceto be Procured: Statistical software (Minitab Academic License) – Please see attachment.

Target Audience: UG & PG Pharmacy Students

Proposed Course Structure:

1		Hours (h)
T	Introduction of Biostatistics ->	
	Areas of application of Biostatistics in Pharmaceutical Industry and Profession, central tendency of	
	dispersion, Mean, Median, Mode, Standard Deviation, Standard Error of Mean, Variance,	
	Continuous and Discrete Series, concept of parametric and non-parametric test	
2	Concept of Distribution ->	2
	Frequency distribution, Class, Range, Interval, BINs, Discrete and Continuous frequency	
	distribution, Correction factor, Kurtosis, Gaussian (normal), Binomial, Poisson, Probability	
	Distribution	
3	Determination of Sample size and Hypothesis Testing ->	2
	Power Analysis, Type of errors, confidence Intervals, Null and Alternate hypothesis, Acceptance and	
	Rejection of hypothesis, Z-test, Chi-SquareTest	
4	F-test->	2
	Origination and utility of F-test, Data input for F-Test, Result Analysis (Hands on training on	
	relevant software)	
5	T-test->	2
	Various t-test, Post Hoc tests, Bonferroni's T-test, Tukey's honest significant difference test, Dunnett	
	t-test, One tailed and two tailed distributions, Paired T-test, Equal and Unequal Variance,	
	Interpretation of results and applications (Hands on training on Microsoft Excel, SPSS, Minitab etc.)	
6	ANOVA>	2
	One way ANOVA, Two Way ANOVA, Confidence Interval, Performance of ANOVA (Hands on	
	with Software)	
7	Principal Component Analysis (PCA) ->	2
	Theory, Concept of Eigenvalues and Eigenvectors, Values of Dimension reduction, Hands on	
0	performance in Software	
8	Regression Analysis ->	2
	Concept of Regression, Multiple Linear Regression (MLR), Spearman's Rank Correlation	
9	Coefficient, Pearson Correlation Coefficient, Demonstration of MLR in Process output, Drug Design Non Parametric Tests->	2
9	Non Parametric Tests-> Wilcoxon Ranked Sign Test, Wilcoxon Ranked Sum test or Mann-Whitney U-Test, Kruskal-Wallis	2
	Test, Friedmann test	
	Mid-term Examination	2
10	Design of Experiment (DoE)->	2
10	Use of Process variables for DoE, Factorial design, Treatment or Levels, Latin square design, Signal	2
	to noise ratio	
11	2 ^k factorial design->	2
11	Treatment or levels of 2 ^k factorial design, use of Microsoft Excel or Minitab for 2 ^k factorial design	2

12	Central Composite Design (CCD), Box-Behnken design (BBD) ->					
	2D and 3D concepts, Centre, Star and Axial Points, α-value, Calculation of α-value from the factorial					
	design and its levels, CCC, CCI and Face CCD models					
13	13 Use of Minitab for CCD, Factorial design ->					
	Data Input in Minitab, Analysis, setting various parameters and plots in Minitab, solving a real					
	industry problem of process optimization					
14	DoE by Taguchi Method ->	2				
	Data Input in Minitab, Analysis, setting various parameters and plots in Minitab, solving a real					
	industry problem of process optimization, Randomization, Replication, Significance analysis of					
	process optimization by Taguchi Method					
15	Applications of ANOVA in realistic process ->	2				
	Case-I: ANOVA in formulation design, Case-II: ANOVA in analysis of drug's or formulation's					
	effects on various groups					
16	Measurement system Analytics (MSA) ->	2				
	Data input, analysis and optimization using various software or program					
17	Statistical Process Control (SPC) ->	2				
	Data input, analysis and optimization using various software or program					
18	Cluster Analysis->	2				
	Concept of Cluster and Factor Analysis, Data grouping, Plots, Key factors isolation, Practical					
	examples					
19	Project/ Case study-I	2				
	A realistic case study would be given by the course instructor and the analysis and/or outputs would					
	be provided by the students					
20	Project/ Case Study-II	2				
	A realistic case study would be given by the course instructor and the analysis and/or outputs would					
	be provided by the students					
	Final Examination	2.0				

Proposed by IT CELL, BCRCP:

Prof. S. Ray	Dr. Amit K Halder	Dr. SouvikBasak	Dr. FalguniPatra	Mr. S. Banerjee