

Edited by

Subhash C. Mandal Vivekananda Mandal Tetsuya Konishi This page intentionally left blank

Natural Products and Drug Discovery

An Integrated Approach

Edited By

Subhash C. Mandal

Professor Division of Pharmacognosy Department of Pharmaceutical Technology Jadavpur University Kolkata, India

Vivekananda Mandal

Assistant Professor Division of Pharmacognosy Institute of Pharmaceutical Sciences Guru Ghasidas University (A Central University) Bilaspur, India

Tetsuya Konishi

Professor Emeritus Niigata University of Pharmacy & Applied Life Sciences (NUPALS) Tojima, Akiha-ku, Niigata, Japan & Director, Office HALD Food Function Research Sakai, Nishi-ku, Niigata, Japan

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2018 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-08-102081-4

For information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Mica Haley Acquisitions Editor: Anneka Hess Editorial Project Manager: Michelle W. Fisher Production Project Manager: Poulouse Joseph Designer: Matthew Limbert

Typeset by TNQ Books and Journals

Contents

List of Contributors	xix
Foreword	xxiii
Preface	XXV

Section I Traditional Medicine and Drug Discovery

1. Drug Discovery From *Ayurveda*: Mode of Approach and Applications

Tuhin K. Biswas

1.	AYUS	6H and <i>Ayurveda</i>	3
2.	Chro	nological Genesis of Ayurvedic Drugs for Therapeutic	
	Appli	ication	4
3.	Fund	amental Principles of Personalized Medicine, Genetic	
	Study	y, and Applied Aspects of Ayurvedic Pharmacodynamics	14
4.	Class	ification of Ayurvedic Therapeutics	15
	4.1	Ayurvedic Treatment for the Promotion of Health	15
	4.2	Treatment for the Prevention of Disease	16
	4.3	Curative Management in Ayurveda	17
5.	Scier	tific Research of Ayurveda for Drug Development From	
	Plant	Sources	20
	5.1	<i>Rasayana</i> Therapy	20
	5.2	Diabetes Mellitus	20
	5.3	Wound-Healing Drugs	21
	5.4	Learning, Memory, and Cognitive Disorders	21
6.	Scier	tific Research of Ayurveda for Drug Development From	
	Meta	ls and Minerals	22
	6.1	Drugs From Zinc: Jasada Bhasma	23
	6.2	Iron Therapy in <i>Ayurveda</i>	23
	6.3	Gold Therapy in <i>Ayurveda</i>	24
	6.4	Shilajit: A Unique Molecule of Ayurveda	24
7.	Reco	mmendation	25
	Refe	rences	26

2. Traditional and Folk Medicine as a Target for Drug Discovery

Sujata Wangkheirakpam

1.	Introduction		29
2.	Diffe	rent Traditional and Folk Medicines	32
	2.1	Ayurveda	33
	2.2	Maibaron	35
	2.3	Traditional Chinese Medicine	35
	2.4	Traditional Korean Medicine	36
	2.5	African Medicine (Muti in South and Ifa in West)	37
	2.6	Iranian Medicine	37
3.	Taxo	l as a Lead to Cancer Drug Discovery	38
4.	Dem	and for Drugs for Liver Disorders (Hepatic Disease)	42
5.	Dem	and for Drugs for Dengue	45
	5.1	Targeting —and Controlling the Virus	47
	5.2	Targeting —and Controlling the Vector Mosquito	48
6.	Cone	clusion	51
	Refe	rences	53

3. Bioactivity-Guided Phytofractions: An Emerging Natural Drug Discovery Tool for Safe and Effective Disease Management

Partha Palit

1.	Introduction	57
2.	Why Do Bioactivity-Guided Phytofractions Exhibit Promising	
	Alleviation Against Disease Models	59
3.	Separation, Characterization, and Standardization of Target	
	Disease-Specific Bioactivity-Guided Fractions	63
4.	Significance and Utility of Target-Oriented, Disease-Specific,	
	Bioactivity-Guided Phytofractions	63
5.	Experimental Evidence in Favor of Bioassay-Guided	
	Phytofraction as a Therapeutic Tool	66
6.	Discussion and Conclusion	67
	Acknowledgments	69
	References	69

4. Development of Chinese Herbal Health Products for the Prevention of Aging-Associated Diseases

Pou K. Leong, Jihang Chen, and Kam M. Ko

1.	Mito	chondrial Dysfunction in Aging-Associated Diseases	73
	1.1	Cardiovascular Diseases	74
	1.2	Neurodegenerative Diseases	75
	1.3	Osteoporosis	76
	1.4	Dysregulation of Immune Function	77

2.	Conc	ceptual Basis of Preventive Health in Chinese Medicine	79
	2.1	Yin-Yang Theory	79
	2.2	Qi and Body Function	80
	2.3	Restoring the Dynamic Balance Between Yin and Yang and Hence the Generation of Normal Qi Using Chinese	
		Tonifying Herbs	82
3.	Phari	macological Basis of the Health-Promoting Actions of	
	Chin	ese Tonifying Herbs	84
	3.1	Yang/Qi-Invigorating Action: Effects on Cellular Energy	
		Metabolism and Mitochondrial Function	84
	3.2	Yin-Nourishing/Blood-Enriching Action: Effects on	
		Immune and Blood/Circulatory Functions	88
4.	Chin	ese Herbal Tonifying Formulas	90
	4.1	Wu-Zi-Yan-Zong-Wan (Yang-Invigorating)	90
	4.2	Er-Zhi-Wan (Yin-Nourishing)	92
	4.3	Shengmai San (Qi-Invigorating)	92
	4.4	Si-Wu-Tang (Blood-Enriching)	93
5.	Conc	clusions	95
	Refe	rences	96

5. Ethnobotany/Ethnopharmacology, and Bioprospecting: Issues on Knowledge and Uses of Medicinal Plants by Moroccan People

Mostafa Elachouri

Intro	duction	105
Brief	History of Medical Sciences in Muslim-Arab Civilization	106
2.1	Sciences at a Glance in the Golden Age	106
Tradi	tional Medicine in Morocco	111
3.1	Current Medical Ethnobiological Studies	
	in Morocco	112
3.2	Knowledge of Ethnobotany, Ethnomedicine, and	
	Medicinal Plant Uses	113
3.3	The Trading of Medicinal Plants	114
Cons	traints and Challenges Facing the Medicinal Plants	
Secto	r	115
Conc	lusion	116
Refer	ences	116
	Brief 2.1 Tradit 3.1 3.2 3.3 Cons Sector Conc	 Traditional Medicine in Morocco 3.1 Current Medical Ethnobiological Studies in Morocco 3.2 Knowledge of Ethnobotany, Ethnomedicine, and Medicinal Plant Uses

6. Chemotaxonomy of Medicinal Plants: Possibilities and Limitations

Ram Singh and Geetanjali

1.	Intro	duction	119
2.	Secondary Metabolites as Guide for Classifications		120
	2.1	Alkaloid in Chemotaxonomy	120
	2.2	Plant Phenol in Chemotaxonomy	124
	2.3	Quinones in Chemotaxonomy	126
	2.4	Glycosides in Chemotaxonomy	127

3.	Limitations of Chemotaxonomic Classification	128
4.	Summary and Future Prospects	132
	References	132

Section II Leads From Natural Products

7. The Role of Natural Products From Plants in the Development of Anticancer Agents

Danielle Twilley and Namrita Lall

1.	Intro	duction	139
2.	Natu	ral Products and Their Anticancer Activity	140
	2.1	Terpenoids	140
	2.2	Flavonoids	149
	2.3	Alkaloids	159
3.	Plant	-Derived Anticancer Drugs Currently in Use and in	
	Clini	cal Trials	163
	3.1	Vincristine and Vinblastine	164
	3.2	Etoposide and Teniposide	166
	3.3	Paclitaxel and Docetaxel	167
	3.4	Topotecan and Irinotecan	167
	3.5	Elliptinium	167
	3.6	Homoharringtonine	168
4.	Cell	Line Abbreviations	168
5.	Cond	clusion	171
	Refe	rences	171

8. Plant Drugs in the Treatment of Osteoporosis

Sudhir Kumar and Rakesh Maurya

1.	Intro	duction	179
2.	Glob	al Burden of Osteoporosis	180
3.	Mark	ers of Bone Metabolism	180
	3.1	Markers of Bone Formation	181
	3.2	Markers of Bone Resorption	182
4.	Scree	ening Assays for Osteoporosis	184
	4.1	Osteoblast Cultures	184
	4.2	Osteoclast Cultures	185
	4.3	The Ovariectomy Rat Model	185
5.	Oste	oprotective Plant Formulations	186
6.	Activ	e Constituents From Plants	190
	6.1	Flavonoids	190
	6.2	Isoflavonoids	195
	6.3	Lignans	199
	6.4	Coumarins	201
	6.5	Alkaloids	203
	6.6	Conclusions	204
	Refer	rences	205

9. Phytodrugs and Immunomodulators for the Therapy of Leishmaniasis

C. Benjamin Naman, Ciro M. Gomes, and Gaurav Gupta

1.	Leish	imaniasis	213
	1.1	Overview of the Disease	213
	1.2	Epidemiology	214
	1.3	Life Cycle	215
	1.4	Disease Manifestation	216
	1.5	Immunological Alterations in Host	221
2.	Ther	apeutic Agents for Leishmaniasis	222
	2.1	Current Antileishmanial Drugs	222
	2.2	Drug Resistance	225
	2.3	Drug Toxicity and Side Effects	226
	2.4	Polychemotherapy for Leishmaniasis	227
	2.5	Herbal Remedies	228
3.	Drug	g Targets in <i>Leishmania</i>	228
	3.1	Polyamine Pathway	228
	3.2	Thiol Metabolism	230
	3.3	Sterol Pathway	230
	3.4	Glucose Metabolism	231
	3.5	Proteasome Pathway	232
4.	Appr	oaches for Drug Screening of Natural Product Libraries	5
	Agaiı	nst Leishmania	233
	4.1	Fluorescence Activated Cell Sorter-Based Assays	234
	4.2	Plate Reader–Based Assays	234
	4.3	Microscopy-Based High Content Assay	236
	4.4	Animal Models Suitable for Drug Discovery and	
		Development	236
5.	Phyte	ochemicals With Antileishmanial and Immunomodula-	
	tory	Activities	237
	5.1	Natural Products Drug Discovery	237
	5.2	In Vivo Antileishmanial Phytochemicals	239
	5.3	Antileishmanial Crude Plant Extracts	244
	5.4	Plant Natural Product In Vitro Antileishmanial Agents	
		and Immunomodulators	245
	5.5	Marine and Fungal Natural Products With In Vitro	
		Antileishmanial Activity	254
	5.6	Combination Therapy	255
6.	Futu	re Directions and Conclusions	257
	Refe	rences	258

10. Natural Products Targeting Inflammation Processes and Multiple Mediators

G. David Lin and Rachel W. Li

1.	Inflar	nmation Responses and Pathways	277
	1.1	Cellular Changes of Inflammatory Responses	278
	1.2	Signaling Mediators of Inflammatory Responses	279
2.	Com	mon Mediators of Inflammation Pathways	280
	2.1	Eicosanoids	281
	2.2	Protein Kinase–Mediated IkB Degradation	
		in the NF-кВ Pathway	285
	2.3	Inducible NO	285
	2.4	Proinflammatory and Antiinflammatory Cytokines	285
	2.5	Antiinflammatory Drugs Targeting Common	
		Mediators	286
3.	Natu	ral Products Targeting the Common Inflammatory	
	Medi	ators	288
	3.1	Introduction and the Salicylate Story	288
	3.2	Phenolics	289
	3.3	Terpenes	293
	3.4	Alkaloids	294
	3.5	Others	295
4.	Antii	nflammatory Natural Products With Multiple Targets	295
	4.1	Introduction	295
	4.2	Curcumin	296
	4.3	(–)-Epigallocatechin-3-gallate	298
	4.4	<i>trans</i> -Resveratrol	299
	4.5	Quercetin	300
	4.6	Racemosic Acid	300
5.	Cond	lusion	301
	Refe	rences	303

11. Biologically Functional Compounds From Mushroom-Forming Fungi

Hirokazu Kawagishi

1.	Antidementia Compounds	309
2.	Antimethicillin-Resistant Staphylococcus aureus	
	Compounds	315
3.	Osteoclast-Forming Suppressing Compounds	315
4.	Diarrhea-Causing Compounds	317
5.	Acetaldehyde Dehydrogenase Inhibitors	318
6.	Hyaluronan-Degradation Regulating Compounds	319
7.	Acute Encephalopathy Caused by Eating Angel's Wing	
	Oyster Mushroom	321
	References	322

12. Natural Products in Lifestyle Diseases: In Vitro Screening

Anuradha S. Majumdar and Sahil J. Somani

1.	Introduction		
	1.1	Natural Products in Drug Discovery	327
	1.2	Natural Products: Metabolic Disorders (Diabetes,	
		Dyslipidemia, and Obesity)	328
	1.3	Natural Products: Cardiovascular Disorders	336
	1.4	Natural Products: Hypertension	338
	1.5	Natural Products: Stroke	339
	1.6	Natural Products: Cancer	340
	1.7	Natural Products: Osteoarthritis and Chronic	
		Obstructive Pulmonary Disease	342
2.	Summary		343
	Refe	rences	343

13. Common Toxic Plants and Their Forensic Significance

Nawal K. Dubey, Abhishek K. Dwivedy, Anand K. Chaudhari, and Somenath Das

1.	Historical Aspect of Poisonous Plants	349
2.	Common Toxic Plants	350
3.	Impacts of Poisonous Plants on Grazing Animals	351
4.	Toxic Plants of Forensic Significance	358
5.	Detoxification of Plant Poison	363
6.	Therapeutic Use of Poisonous Plants	363
7.	Conclusion	367
	Acknowledgment	368
	References	368

14. Role of Stress in Diseases and Its Remedial Approach by Herbal and Natural Products in Stress-Related Disease Management: Experimental Studies and Clinical Reports

Dhrubojyoti Mukherjee, Partha Palit, Shubhadeep Roychoudhury, Sukalyan K. Kundu, and Subhash C. Mandal

1.	Pathop	physiology of Stress Response	376
2.	Impact of Psychological Stress on Occurrence of Diseases		378
	2.1	Cardiovascular Diseases	378
	2.2	Hypertension	379
	2.3	Diabetes	380
	2.4	Metabolic Syndrome	381

	2.5	Stroke	381
	2.6	Infertility	382
	2.7	Polycystic Ovarian Syndrome	383
	2.8	Pregnancy Outcomes and Miscarriages	383
	2.9	Gastric Ulcer	384
	2.10	Irritable Bowel Syndrome	384
	2.11	Osteoporosis	385
	2.12	Decreased Immunity and Delayed Wound Healing	385
	2.13	Mental Diseases	386
	2.14	Need for Herbal and Natural Drugs in the Manageme	nt
		of Psychological Stress	386
3.	Herba	l Therapy	388
	3.1	Withania somnifera	388
	3.2	Panax ginseng	389
	3.3	Eleutherococcus senticosus	389
	3.4	Magnolia officinalis and Phellodendron amurense	
		Combination	389
	3.5	Rhodiola rosea	390
	3.6	Lavandula angustifolia	390
	3.7	Bacopa monnieri	391
	3.8	Ginkgo biloba	391
	3.9	Ocimum sanctum	392
	3.10	Black Tea	392
	3.11	Green Tea	393
4.	Nutriti	ional Therapy	393
	4.1	Vitamin C	393
	4.2	L-Lysine	394
	4.3	L-Ornithine	395
	4.4	Jerte Valley Cherries	395
	4.5	Fish Oil	395
	4.6	Soy Protein	395
	4.7	Casein Tryptic Hydrolysate	396
	4.8	Yoghurt	396
	4.9	Whey Protein	397
5.	Conclu		398
		wledgments	399
	Refere	ences	399

15. Antiinflammatory Medicinal Plants: A Remedy for Most Disease Conditions?

Sunday O. Otimenyin

1.	Inflammation		
	1.1	Agents That Trigger and Sustain Inflammation	412
	1.2	Mechanism of Inflammation	413
	1.3	Healing of Injured Tissue	415
	1.4	Active Antiinflammatory Constituents in Plants	415

	1.5	Inflammatory Mediator Inhibitors in Plants	415
	1.6	Medicinal Plants That Prevent Cell/Tissue	
		Injury	420
	1.7	Cosmetic Effects of Analgesic and Antiinflammatory	
		Medicinal Plants	421
	1.8	The Role of Inflammation in Disease Conditions	422
2.	Inflar	nmation in Disease Conditions	423
	2.1	Alzheimer's Disease	423
	2.2	Asthma	423
	2.3	Cancer	423
	2.4	Cardiovascular Disease	424
	2.5	Inflammatory Bowel Disease	424
	2.6	Rheumatoid Arthritis	425
	2.7	Infection	425
	2.8	Metabolic Syndrome	425
3.	Medi	cinal Plants With Antiinflammatory Properties	426
	Refer	rences	427

Section III Herbal Drug Research

16. Techniques and Technologies for the Biodiscovery of Novel Small Molecule Drug Lead Compounds From Natural Products

Phurpa Wangchuk and Alex Loukas

1.	Introd	duction	435
2.	Biolog	gical Resources and the Search Strategies	
	for N	ovel Drug Lead Compounds	437
	2.1	Biological Resources With Chemotherapeutic	
		Compounds	437
	2.2	Search Strategies for Novel Drug Lead	
		Compounds	439
3.	Logica	al Framework Approaches for the Biodiscovery of	
	Small	Molecule Drug Lead Compounds	440
	3.1	Selecting Biological Materials: Their Identification and	
		Collection Processes	441
	3.2	Metabolomics Studies of Crude Extracts: A Recent	
		Development	444
	3.3	Techniques for Separation, Isolation, and Structure	
		Elucidation of Natural Products	448
	3.4	Biological Activity Screening of Crude Extracts	
		and Pure Compounds	454
4.	Conc	lusions and Future Directions	460
	Refer	ences	460

17. Herb and Drug Interaction

Nilanjan Ghosh, Rituparna C. Ghosh, Anindita Kundu, and Subhash C. Mandal

1.	Intro	duction	467
2.	Phar	macokinetic Herb–Drug Interactions	468
	2.1	Metabolism of Herbal Drugs by Intestinal Microflora	469
	2.2	Hepatic Metabolism of Herbal Medicines	469
	2.3	Phase I: Metabolism by the Cytochrome System	470
	2.4	Induction and Inhibition of Metabolic Enzymes	471
	2.5	Efflux of Drugs Through Efflux Transporters	472
	2.6	Organic Anion-Transporting Polypeptide	473
3.	Phar	macodynamic Interactions	474
4.	Selee	cted Clinical Herb-Drug Interactions	476
	4.1	Grapefruit Juice	476
	4.2	St. John's Wort	476
	4.3	Ginkgo biloba	478
	4.4	Garlic	479
	4.5	Berberine	480
	4.6	Licorice	481
5.	Appr	oaches to Identify Herb–Drug Interactions	482
6.	Cond	clusion	483
	Refe	rences	484

18. Toxicity Studies Related to Medicinal Plants

Kavimani Subramanian, Divya Sankaramourthy, and Mahalakshmi Gunasekaran

1.	Introd	luction	491
2.	Toxicity Studies Are Indispensable for Medicinal Plants		
3.	Prepa	ration of a Test Substance for Toxicity Studies	493
4.	Toxici	ty Studies: General Considerations	493
	4.1	Gross Behavioral Studies	493
	4.2	Conventional Methods for LD ₅₀ Determination	494
5.	Acute	Toxicity Testing	494
	5.1	Fixed Dose Procedure	494
	5.2	Acute Toxic Class Method	495
	5.3	Up and Down Procedure	495
	5.4	Acute Inhalational Toxicity	496
	5.5	Acute Inhalational Toxicity	496
	5.6	Acute Dermal Toxicity	496
6.	Subac	cute Toxicity Studies	497
7.	Subch	nronic Toxicity Studies (OECD TG 408, 409, 411, 413)	498
8.	Chror	nic Toxicity Studies	498

9.	Speci	al Toxicity Studies	500	
	9.1	Acute Eye Irritation/Corrosion Test	500	
	9.2	Skin Sensitization Test	501	
	9.3	Prenatal Developmental Toxicity	501	
	9.4	Neurotoxicity Studies	501	
	9.5	Carcinogenicity Studies	502	
	9.6	Reproduction Toxicity Studies	502	
	Refer	ences	502	

19. Prebiotics: A Functional Food in Health and Disease

Dharmik Joshi, Somdatta Roy, and Sugato Banerjee

1.	Gut	Gut Microbes	
2.	Facto	ors Influencing the Composition of Gut Flora	507
3.	Heal	th Benefits of Prebiotics	511
	3.1	Acute Gastroenteritis	511
	3.2	Cancer	511
	3.3	Mineral Absorption	513
	3.4	Lipid Metabolism	513
	3.5	Distant Effects of Prebiotics	516
	References		519

20. Cultivation of Medicinal and Aromatic Plants

Ajay G. Namdeo

1.	Intro	duction	525
2.	Susta	inable Development	526
3.	Culti	vation of Medicinal and Aromatic Plants	529
	3.1		529
	3.2	Factors Affecting Cultivation of Medicinal Plant	541
4.	Орр	ortunities in Developing the Medicinal Plants Sector	547
	4.1	Institutional Support	547
	Refe	rences	551

21. Digitization of Traditional Knowledge

Souvik Basak

1. 2.	Introduction Why Digitization of Natural Products Is Necessary		
	2.1	Digital Databases on Traditional Knowledge (Web	
		Based)	556
	2.2	Bioinformatics-Guided Approach for Traditional	
		Knowledge	556
	2.3	Metadata Portals	581
3.	Biodiv	ersity Analysis	581

4.	Virtu	al Screening of Natural Products From Databases	581
	4.1	Screening Through Network Pharmacology	583
	4.2	Screening Through Cheminformatics	586
5.	Bioin	formatics Approach to the Digitization of Knowledge	
	on N	latural Products	588
	5.1	Quality Control of Herbals Using Next Gen	
		Sequencing	588
	5.2	Expressed Sequence Tags	588
	5.3	Simple Sequence Repeats	589
	5.4	Constructing Network Biology Through	
		Chemogenomics	589
	5.5	Network Biology Models—Distance-Based Mutual	
		Information Model	589
	5.6	Quantitative Composition-Activity Relationship	
		Study	590
	5.7	Network Target-Based Identification of Multicompo-	
		nent Synergy	590
	5.8	Application of the Bioinformatics Approach for Drug	
		Discovery From Traditional Plants	590
	5.9	In Silico Docking	591
6.	Inver	'tNet	591
7.	Scree	ening From Actinobacteria	591
8.	Pred	iction Informatics for Secondary Metabolomes	592
9.	Bioin	formatics to Natural Products Through Synthetic	
	Biolo	ogy	592
10.	eSNa	aPD, a Novel Web-Based Bioinformatics Tool	595
11.		Barcoding in Natural Products	600
12.		ussion and Conclusion	600
	Refe	rences	602

22. Good Agricultural Practices: Requirement for the Production of Quality Herbal Medicines

Supradip Saha, Abhishek Mandal, and Anirban Dutta

1.	Intro	duction	607
	1.1	What Are Good Agricultural Practices?	608
	1.2	Why Good Agricultural Practices?	610
2.	Basic	Components of Good Agricultural Practices	611
	2.1	Hygiene and Cleanliness	611
	2.2	Prevention of Contamination	611
	2.3	Identification	611
	2.4	Efficacy	612
	2.5	Production and Income	612
	2.6	Sustainability	612
	2.7	Documentation and Traceability	612
	2.8	Social and Legal Concerns	613
3.	Good	d Agricultural Practices for Medicinal Plants	614
	3.1	Identification	614
	3.2	Healthy Propagation Materials	614

	3.3	Agronomic Practices	615
	3.4	Good Collection Practices	619
	3.5	Postharvest Processing	620
	3.6	Packaging and Labeling	621
	3.7	Storage and Transportation	622
	3.8	Sanitation	622
4.	Qual	lity Control and Good Agricultural Practices	624
5.	Goo	d Agricultural Practices: Ethical and Legal	
	Cons	siderations	629
6.	Epilo	gue	629
	Refe	rences	630

23. Fundamentals of Microwave-Based Sample Preparation for Plant-Based Drug Discovery

Roshni Tandey, Kavi B.S. Chouhan, and Vivekananda Mandal

1.	Introc	luction	633
2.	Frequ	ently Asked Questions	634
	2.1	What Shall Be the Strategy for Plant Selection in	
		the Case of Microwave-Assisted Extraction of	
		Botanicals?	634
	2.2	Is Any Special Preextraction Treatment Necessary	
		for the Raw Material Before Subjecting It to	
		Microwave-Assisted Extraction?	636
	2.3	How Is Microwave-Assisted Extraction to Be	
		Performed and Which Factors Need to Be Optimized	
		and How?	636
	2.4	How Can the Performance of the Microwave-Assisted	
		Extraction Technique Be Monitored and Decisions	
		Taken on the Optimum Set of Conditions?	637
	2.5	How Can It Be Ensured That No Thermal	
		Degradation Takes Place at the Optimum	
		Operating Conditions?	638
	2.6	How Is the Mechanism of Accelerated Extraction	
		Phenomenon in the Case of Microwave	
		Treatment Elucidated and How Can Its Complete	
		Supremacy Over Conventional Methods Be Proved?	638
3.	Key R	eminders for Microwave-Assisted Extraction of	
	Botan	icals	639
4.	Conclusion		640
	Acknowledgments		641
	Furth	er Reading	642

Author Index	643
Subject Index	701

This page intentionally left blank

List of Contributors

- Sugato Banerjee, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
- Souvik Basak, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India
- **Tuhin K. Biswas**, Department of Kayachikitsa (Medicine), J.B. Roy State Ayurvedic Medical College and Hospital, Kolkata, India
- Anand K. Chaudhari, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Jihang Chen, Hong Kong University of Science & Technology, Hong Kong SAR, China
- Kavi B.S. Chouhan, Institute of Pharmacy, Guru Ghasidas Central University, Bilaspur, India
- Somenath Das, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Nawal K. Dubey, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Anirban Dutta, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Abhishek K. Dwivedy, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Mostafa Elachouri, Mohammed first University, Oujda, Morocco
- Geetanjali, Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
- Nilanjan Ghosh, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India
- Rituparna C. Ghosh, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India
- Ciro M. Gomes, Hospital Universitário de Brasília, Brasília, Brazil
- Mahalakshmi Gunasekaran, Department of Pharmacology, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, India
- Gaurav Gupta, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- **Dharmik Joshi**, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India

Hirokazu Kawagishi, Shizuoka University, Shizuoka, Japan

- Kam M. Ko, Hong Kong University of Science & Technology, Hong Kong SAR, China
- Sudhir Kumar, Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, India
- Anindita Kundu, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Sukalyan K. Kundu, Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
- Namrita Lall, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Pou K. Leong, Hong Kong University of Science & Technology, Hong Kong SAR, China
- Rachel W. Li, ANU Medical School, The Australian National University, Canberra, ACT, Australia
- **G. David Lin**, Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
- Alex Loukas, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, QLD, Australia
- Anuradha S. Majumdar, Department of Pharmacology, Bombay College of Pharmacy, Mumbai, India
- Abhishek Mandal, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Vivekananda Mandal, Institute of Pharmacy, Guru Ghasidas Central University, Bilaspur, India
- Subhash C. Mandal, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Rakesh Maurya, Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, India
- **Dhrubojyoti Mukherjee**, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- **C. Benjamin Naman**, Center for Marine Biotechnology and Biomedicine, University of California, San Diego, California, United States
- Ajay G. Namdeo, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
- Sunday O. Otimenyin, Department of Pharmacology, University of Jos, Plateau State, Nigeria
- Partha Palit, Department of Pharmaceutical Sciences, Assam University, Silchar, India
- Somdatta Roy, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India

- Shubhadeep Roychoudhury, Department of Life Science & Bio-Informatics, Assam University, Silchar, India
- Supradip Saha, ICAR-Indian Agricultural Research Institute, New Delhi, India
- **Divya Sankaramourthy**, Department of Pharmacology, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, India
- Ram Singh, Department of Applied Chemistry, Delhi Technological University, Delhi, India
- Sahil J. Somani, Department of Pharmacology, RK University, Rajkot, India
- Kavimani Subramanian, Department of Pharmacology, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, India
- Roshni Tandey, Institute of Pharmacy, Guru Ghasidas Central University, Bilaspur, India
- Danielle Twilley, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Phurpa Wangchuk, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, QLD, Australia
- Sujata Wangkheirakpam, Department of Chemistry, NIT Manipur, Imphal, India

This page intentionally left blank

Foreword

I feel genuinely honored in writing this foreword for the book *Natural Products and Drug Discovery: An Integrated Approach*, edited by three excellent scholars from the area of natural products research: Subhash C. Mandal, Vivekananda Mandal, and Tetusya Konishi. Natural products have evidently been one of the major sources of new drugs, and will continue to be so in the years to come. This very reason has prompted a huge body of research exploring natural products for new drugs to combat various ailments. There are several books and excellent review articles available to date covering various areas relating to natural products research, particularly the area of natural products drug discovery, but this book will stand out from the crowd probably because of its inclusive approach to integrating several aspects of natural products drug discovery processes in one book.

This book offers 23 chapters organized in three distinct sections: traditional medicine and drug discovery (six chapters), leads from natural products (nine chapters), and herbal drug research (eight chapters). All these chapters are written by experts from relevant areas of natural products drug discovery.

Natural Products and Drug Discovery: An Integrated Approach integrates several classical and modern aspects of drug discovery, from Chinese traditional medicine to Ayurvedic medicine, as well as modern aspects of drug discovery strategies, e.g., natural products lead discovery, and will act as an outstanding reference book for natural products researchers.

I wholeheartedly recommend this book to all who are interested in natural products drug discovery and related areas.

Professor Satyajit D. Sarker

Editor-in-Chief, Phytochemical Analysis Director, School of Pharmacy and Biomolecular Sciences Liverpool John Moores University Liverpool L3 3AF United Kingdom This page intentionally left blank

Preface

Natural product research has become the leading force in the drug discovery sector. This fact has been further triggered due to the enormous risk and time involved in the synthetic route of drug discovery. Natural product research, though more complicated due to the complex mixtures involved, still offers a more successful rate when compared to synthetic drug discovery. From ancient histories it becomes evident that traditional medicine (Ayurveda, the Indian traditional system, traditional Chinese medicine, traditional Japanese medicine, etc.) has always been there to reduce the sufferings of human ailments, even before the advent of antibiotics. Today's drug discovery is no longer just a case of trial and error or mere serendipity but rather has become a more programmed and strategized venture. Drug discovery these days has become an integrated approach of modern biology and traditional medicine using a holistic approach. The modern tools of chemistry and biology-in particular, the various "-omics" technologies-now allow scientists to detail the exact nature of the biological effects of natural compounds on the human body, as well as to uncover possible synergies, which hold much promise for the development of new therapies against many devastating diseases. Henceforth, we cannot deny the shift of the scientific community more toward traditional medicines involving complementary and alternative therapies. Well-strategized ethnobotanically inspired natural product research can provide vital leads with the potential for developing them as future drug candidates. Henceforth, this is the perfect time to bring out a book that can act as a fuel to this driving force of drug discovery. This book serves as a "one-stop solution" for all beginners in the field of botanical research leading to drug discovery and is committed to fulfilling the needs of herbal drug researchers. The book is an amalgamation of 23 scientifically crafted chapters prioritized judiciously into three major groups. Through the various chapters, the book acts as a vital support system for natural product researchers where all issues pertaining to drug discovery from botanicals are dealt with under a single umbrella system. The book aims to dig deep into our cultural roots and extract the ancient science of different traditional systems of medicine practiced worldwide to try to integrate ancient knowledge with modern approaches for empowering the drug discovery process. Application of ethnopharmacology in developing preventive and clinical medicine is emphasized upon. On the other hand, the book also amalgamates different strategies and ideologies under one roof, presents a simplified approach of bioassay-guided fractionation and

isolation, and showcases important traditional leads that can be explored for future drug discovery. Recent developments in the science of enzyme substrate reactions are highlighted and the role of in vitro techniques is exemplified in the process of drug discovery.

We humbly express our gratitude to our national and international funding agencies and home universities who have supported us in our journey of natural product research. We are also thankful to our peer review team for timely reviewing the manuscripts and providing valuable inputs. Finally, we express our deep gratitude to our family members for their constant support, particularly during the busy days of compiling this book. Chapter 21

Digitization of Traditional Knowledge

Souvik Basak

Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India

1. INTRODUCTION

In the last few decades research involving natural products has been a prime focus across the globe since natural products have been found to be toxicologically safer to the human community than synthetic products. The prior utilization of natural products over synthetic or semisynthetic products is the basis for lower toxicity of naturally obtained molecules yet befits the particular receptor for drug action. In addition, natural products are structurally more diverse than synthetic or semisynthetic compounds, hence they are more promising for new drug discovery. Thus increasing attention has been focused on this arena to utilize a broader set of natural products for drug discovery.

2. WHY DIGITIZATION OF NATURAL PRODUCTS IS NECESSARY

Over a time period of 4 billion years evolution has taken place to create complex biodiversity across the globe [1] and to indulge in fundamental life forms over the earth. Of 7-20 million species around the world, only 1-2 million have been identified and scientifically named [2,3]. In addition, tropical countries are the storehouses of biodiversity because of their temperate climate as well as humidity [4]. Concomitant with this biodiversity evolution, plants and animals have also evolved and were used in the past as traditional medicinal plants across the globe [5]. However, with the increase in natural product usage, an emerging need has grown over the years to organize or compile knowledge for the effective utilization of the data. There are almost 300,000 medicinal plants [7]. Thus attempts have been made to compile this knowledge in an organized form, which has been initiated through digital

embodiment of the relevant information. Digitization has occurred predominantly via four approaches:

- 1. Digital databases on traditional knowledge (web based).
- 2. Bioinformatics-guided approach of traditional knowledge.
- 3. Virtual screening of natural products.
- 4. In-silico approach for natural product-guided drug discovery

2.1 Digital Databases on Traditional Knowledge (Web Based)

To compile, store, and organize medicinal plant knowledge, attempts have been made in several countries to code traditional medicinal plant knowledge in several databases. These databases not only help researchers to find specific information about medicinal plants, it also helps them to locate, identify, and collate data about certain plants in specific places followed by utilization in their system. The most commonly used databases are summarized in Tables 21.1 and 21.2.

2.2 Bioinformatics-Guided Approach for Traditional Knowledge

Although a plethora of digital databases is available for searching medical plants at a particular ecological niche or geographical region, the problem is identifying them based on their evolutionary pattern as well as their genetic makeup, which often determine the plants' properties in an applied field. To help with this, bioinformatics-based approaches have evolved that, based on specific programming-guided coding/decoding/scoring systems, aid in identification and property evaluation of certain plants in a specific database. These approaches often rely on the mutual interaction of two datasets on a common bioinformatics platform either for identification or for revelation of a common sequence space inside a genetic subset for predictive exploration of its functional properties. The general notion in this approach is that plants or animals have evolved due to changes in temperature, humidity, oxygen, or any other geographical factor/s, thus there is a genetic similarity between all these species in spite of biodiversity all over the world. Thus bioinformatics-based approaches can be classified as follows:

- 1. Identification of traditional components.
- 2. Digitization of traditional datasets.
- 3. Creation of biodiversity databases.

2.2.1 Identification of Traditional Components

Identification of traditional components is based on several identification tools that are basically web based. In this format, taxonomic descriptions are coded

Database	Subdatabase	Summary	Website
African traditional knowledge database	Francophone database or PHARMEL (Pharmacopée et Medecine Traditionnelle)	A database containing 19,691 recipes from 24 African countries, 4000 medicinal records, and 51 references	http://www.ulb.ac.be/sciences/bota/pharmel. htm
	Bilingual database (PRELUDE database)	This database comprises information on traditional veterinary and human medicine plants in sub-Saharan Africa	http://pc4.sisc.ucl.ac.be/prelude.html
	PROTA (Plant Resources of Tropical Africa)	A database containing 7000 useful plants, 200,000 references, 30,000 photographs, and 6000 geographic distribution maps	http://www.prota.org/PROTAstartframes.htm
	The English database TRAMED (Traditional Medicine Database)		http://www.healthnet.org.za/tramed/gen/ tramedsearch
	NTRAP	The Database of Natural and Traditional Pesticidal Materials and Pest Control in Sub-Saharan East Africa	http://www.ippc.orst.edu/ipmafrica/db/index. html
	IMRA (Institute Malgache de Recherches Appliquées)	IMRA has a database containing computerized ethnobotanical data of over 4000 Madagascan plants	

TABLE 21.1 Database of Detailed Information on Natural Products

Continued

Database	Subdatabase	Summary	Website
	NAPRECA (NAtural Products Research Network for Eastern and Central Africa)	NAPRECA (www.naprecanetwork.net) is a network of natural products research scientists in East and Central Africa. The database tries to discover relevant chemicals used to remediate health problems and other beneficial problems all over the world	http://www.napreca.ne
	WANPRES (West African Network of Natural Products REsearch Scientists)	A sub-Saharan database for the Western Africa Network of Natural Products Research Scientists. It helps coordinate chemists and natural products all over the world	www.wannpres.org
CRISP		Computer-based retrieval of Information on Scientific Projects database, which has been government funded and has been carried out by universities, hospitals, and other research institutions	http://crisp.cit.nih.gov
Indian Medicine		A database for Indian Ayurvedic, Yoga, Siddha, Homeopathy, and Unani systems of medicine	http://indianmedicine.nic.in
NAPRALERT	NAtural PRoducts ALERT from STN International	A relational database of all products including ethnomedical information and other experimental studies including pharmacological in vitro/ in vivo bioassays. Currently more than 200,000 scientific reports are in the database	http://info.cas.org/online/DBSS/napralertss.html

TABLE 21.1 Database of Detailed Information on Natural Products-cont'd

UK Crop Net Database		http://ukcrop.net/db.html
Database on medicinal plants, a database formed by the Government of India		http://www.nmpb-mpdb.nic.in/
Medicinal and Aromatic Plants Abstracts (MAPA)	Published by the National Institute of Science Communication, CSIR, New Delhi. 55,000 abstracts published in the first 18 volumes of the journal, which are solely made up of databases on medicinal plants	http://www.fao.org/docrep/w7261e/ W7261e09.htm
GLOBinMED	A database on Malaysian traditional and complementary medicine	http://www.globinmed.com/index.php? option=com_ content&view=article&id=80849&Itemid=101
Database on Indian medicinal plants		http://www.medicinalplants.in/
An Herbal/Medical Dictionary	A Glossary of terms used in Herbalism, Medicine and Physiology, Descriptions, Explanations, and Implications in Wholistic and Vitalist Therapy	http://www.swsbm.com/ManualsMM/ MedHerbGloss2.pdf
Annie's Remedy	General guide to herbal medicine including common and botanical names; some records have citation information (check out the Herb Chart link—chart contains links to records)	http://www.anniesremedy.com/

Continued

Database	Subdatabase	Summary	Website
Arctic Science Portal		A library of links to websites where Arctic data are made publicly available. These websites contain information about indigenous plants and their uses	https://www.uspto.gov/patent/laws-and- regulations/comments-public/ traditional-knowledge-and-medicine- dictionariesdatabases
Cacti Guide		Common and Latin names plus photographs	http://cactiguide.com/
Dasherb		Latin, English, PinYin, and Chinese names of medicinal herbs, descriptions, and uses	http://www.dasherb.com/database/index.html
CHEMnetBASE		170,000 natural products with names and synonyms, formulae, chemical structures, CAS Registry Numbers, extensive source data, uses and applications, physical state, melting point, boiling point, pKa, and key literature citations	http://dnp.chemnetbase.com/
Dr. Duke's Phytochemical and Ethnobotanical Databases		All references are to Duke, James A. (1992). The linked records contain plant names, alternative names for plants, and information about chemicals found in plants	https://phytochem.nal.usda.gov/phytochem/ search

Eastern Chinese Medicine Export Company	Latin, English, and PinYin names, searchable by medical use or symptoms	http://tcmtreatment.com/images/herb-supply/ herb-price/three-lists.htm
Find Me A Cure	Botanical names with common names in English, Chinese, and multiple Indian languages. Includes information about uses of herbs. Searchable via text input box, Herbs Glossary (botanical names), and list of Ailments and Remedies.	http://tcmtreatment.com/images/herb-supply/ herb-price/three-lists.htm
Find Wild Flowers	Identification of British flora	http://www.botanicalkeys.co.uk/flora/
Fungal Database	United States Department of Agriculture. Scientific and common names, synonyms, specimens, and literature	https://nt.ars-grin.gov/fungaldatabases/
Germplasm Resources Information Network (GRIN)	United States Department of Agriculture (USDA). Scientific and common names and synonyms	https://nt.ars-grin.gov/fungaldatabases/
Gernot Katzer's Spice Pages	10,500 plant names in more than 60 different languages, with origins, constituents, etymology, images, and uses	http://gernot-katzers-spice-pages.com/engl/ index.html?redirect=1
Hawaiian Ethnobotany Online Database	Database of Hawaiian names, species names, and vernacular names of plants. The linked records contain information about the uses of the plants with references.	http://data.bishopmuseum.org/ethnobotanydb/ ethnobotany.php?b=list&o=1

Continued

Database	Subdatabase	Summary	Website
Herbal Medicine Materia Medica		Descriptions, constituents, and cited references	http://www.ichineseherbs.com/cross_ref_of_ names.html
iChinese Herbs		Latin, common, and PinYin names	http://www.ichineseherbs.com/cross_ref_of_ names.html
Interagency Taxonomic Information System (ITIS)		Diverse US government agencies partnership. Standardized nomenclature, taxonomic data, and hierarchical classification. Hyperlinks to diverse off-site resources	https://www.itis.gov/
Korean Traditional Knowledge Portal (KTKP)		Korean Intellectual Property Office's database service for searching traditional knowledge from old and very recent Korean and Chinese medicines, including journal articles and patents. Requires registration/ subscription.	http://www.koreantk.com/ktkp2014/
Liber Herbarum		Cross-referenced herbal medicine database based fully on printed sources, inspired by the first known Danish medicine book <i>Liber</i> <i>Harbarum</i> written by Henrik Harpestgreng in the 13th century.	http://www.liberherbarum.net/

TABLE 21.1 Database of Detailed Information on Natural Products-cont'd

Malta Wild Plants	Detailed records for wild flowering plants of Malta. By Stephen Mifsud	http://www.maltawildplants.com/
Mushroom Nutrition	Scientific and common names, descriptions, and medicinal uses for mushrooms with citations to literature provided	https://www.mushroomnutrition.com/
NAPRALERT	Database of natural products, including ethnomedical information and pharmacological/biochemical information on extracts of organisms in vitro, in situ, in vivo, in human (case reports, nonclinical trials), and clinical studies. Fee required	https://www.napralert.org/
Native Plants Hawaii	A single, comprehensive, and searchable online knowledgebase of endemic and indigenous plants of Hawaii. Some records name additional reference works	http://nativeplants.hawaii.edu/
Natural Medicines Comprehensive Database	Evidence-based clinical relevance. Searchable by product name or medical condition. Links to PubMed	http://naturaldatabase.therapeuticresearch. com/home.aspx? AspxAutoDetectCookieSupport=1
Northern Ontario Plant Database	Records for some 55,000 herbarium specimens from northern Ontario educational and government institutions	http://naturaldatabase.therapeuticresearch. com/home.aspx? AspxAutoDetectCookieSupport=1

Continued

Database	Subdatabase	Summary	Website
Oro Verde Green Gold from Amazonia		Guide to Amazonian and Andean medicinal plants including common and botanical names; records contain citation information (click on any of the "more info" links to see records)	http://www.oroverde.cz/
Plants For A Future		Latin and common names, uses, constituents, and cited references. Registration required	http://www.pfaf.org/user/plantsearch.aspx
Plantsciencenetbase		CRC collection. Covers individual plants, from historical to modern topics, as well as transgenics and evolutionary biology	http://www.crcnetbase.com/page/plant_ science_ebooks
Society for Research and Initiatives for Sustainable Technologies and Institutions		Database of medicinal plants containing uses, botanical names, common names, and Sanskrit names	http://www.sristi.org/hbnew/plant_db.php
Southwest School of Botanical Medicine		Known chemical constituents for over 250 medicinal plants	http://www.swsbm.com/Constituents/ Constituents.html
The Encyclopedia of New Zealand: medicinal use of plants		Plants used in traditional methods for healing	http://www.teara.govt.nz/en/rongoa-medicinal- use-of-plants/page-1

TABLE 21.1 Database of Detailed Information on Natural Products-cont'd

The International Plant Names Index	A database of the names and associated basic bibliographical details of seed plants, ferns, and lycophytes	http://www.ipni.org/ipni/plantnamesearchpage. do
The Plant List	From the Royal Botanic Gardens, Kew, and Missouri Botanical Garden. Latin names, synonyms, and unresolved names for vascular plants, mosses, and liverworts. Excludes algae, fungi, and common names	http://www.theplantlist.org/
Traditional Knowledge Digital Library—India (TKDL)	TKDL is based on 148 books of Indian systems of medicine. Requires registration with the Government of India	http://www.tkdl.res.in/
University of Melbourne	Multilingual (21 languages) plant name database with links to sites in various languages	http://www.plantnames.unimelb.edu.au/ Sorting/List_bot.html
University of Washington	Hyperlinks to Medline, USDA Plants Database, and Plants For A Future Database	https://staff.washington.edu/boerm/uwmhg//
USDA Plants Database	Searchable via multiple access points	http://plants.usda.gov/java/
Western United States Flora Checklists	Latin names and common names	http://www.swsbm.com/HOMEPAGE/Floras/ Checklists.html
Prelude Medicinal Plants Database	The PRELUDE database concerns the use of plants in different traditional veterinarian and human medicines in Africa	http://www.africamuseum.be/collections/ external/prelude

Continued

Database	Subdatabase	Summary	Website
Database Anti- Diabetic Medicinal Plants diversity (DADMP)		DADMP is developed and maintained by Gopinath Krishnasamy, Department of Bioinformatics, Alagappa University, Karaikudi. This database contains more than 100 medicinal plants from Valaiyans of Alagarkoil hills to treat diabetes	http://www.mkarthikeyan.bioinfoau.org/ dadmp/
HerbMed		Collection of several herbal websites such as AGRICOLA, American Indian Ethnobotany Database, Carotenoid Database for US Foods, IBIDS, etc. It is basically a categorized, evidence- based resource for herbal information, with hyperlinks to clinical and scientific publications and dynamic links for automatic updating; produced by the nonprofit Alternative Medicine Foundation	http://www.herbmed.org/links.html
PLANT		Database on Brazilian medicinal plants	Manha et al. [8]
Medherb		A medicinal plant database with genetic information	Rajoka et al. [9]

TABLE 21.1 Database of Detailed Information on Natural Products-cont'd

AyurMedBase	An Ayurvedic medicinal database for traditional and Ayurvedic medicinal systems	www.grin.com
Cameroon 3D	Botanical database of Cameroon containing 2500 compounds of natural origin and 224 medicinal plants belonging to 55 families	Ntie-Kang et al. [10]
p-ANAPL	A collection of more than 500 natural products from African medicinal plants, which has been subjected to Lipinsky's "Rule of Five" and virtually unleashed relevant compounds with pharmacological properties	Ntie-Kang et al. [11]

TABLE 21.2 Bo	otanical Image Database		
Туре	Database	Description	Website
General plants worldwide	Albion College Vascular Plant Image Gallery	A database to support organizational botany courses; images mainly collected from North America and the Caribbean basin	http://www.albion.edu/plants/
	An Array of Botanical Images	Over 24,000 botanical images, arranged alphabetically by genus	http://www.plantsystematics.org/reveal/ pbio/RevealSlides/slideindex.html
	Anthos project	Mainly identifies Spanish flora, including photos, distribution maps, and nomenclature	http://www.anthos.es/
	Atrium (biodiversity information developed by the University of Texas)		http://www.atrium-biodiversity.org/
	Botanical Society of America Online Image Collection	Has photos categorized into a number of groups, including plant anatomy, botany, and plant science (many subcategories), people, places, and events, and plant morphology	http://pix.botany.org/index.php? module=simplemedia&type= user&func=view&ot=collection&tpl=tree
	Botanique.org	Images with botanical and biodiversity information	http://www.botanique.org/
	BotIT (includes fungi too)		http://botit.botany.wisc.edu/
	Digital Flowers	Images of angiosperms	http://www.life.illinois.edu/help/ digitalflowers/
	Flora of the World	Flowering plants	http://www.floraoftheworld.org/

Internet Directory for Botany	Over 100,000 images	http://www.ou.edu/cas/botany-micro/idb- alpha/botany.html
Life Web Site		http://www.nic.funet.fi/pub/sci/bio/life/ plants/magnoliophyta/index.html
Noble Foundation Plant Image Gallery		https://www.noble.org/imagegallery/
PhytoImages		http://www.phytoimages.siu.edu/
PLANTS Database	United States Department of Agriculture National Resources Conservation Service. Searchable database with images, distribution maps, nomenclatural information, and more	http://plants.usda.gov/gallery.html
Plantillustrations.org		http://plantillustrations.org/
PlantSystematics.org	Keys, cladograms, and over 45,000 images of vascular plants	http://www.plantsystematics.org/
Raintree Tropical Plant Database	Images of tropical raintree plants	http://www.rain-tree.com/plantimages. htm#.WGpEIIV97IW
Scott's botanical links		http://www.ou.edu/cas/botany-micro/bot- linx/subject/sub-pict.shtml

in specific electronic languages, which are open for scientists and accessible for exploration of unknown taxonomic datasets. Such biological identification methodology can be classified into three categories: the field guide method, dichotomous paper keys (which is the mostly used method), and computerbased methods. The latter can also be accomplished by four major techniques: hypertext keys, multiaccess keys, expert systems, and neural networks. Multiaccess keys based on a species—character matrix are used predominantly for the identification of biological databases (http://www.borealis.nu/exjobb/ Index_en.html).

A good interactive key bears three fundamental attributes: (1) unrestricted character use, (2) ranking of the best character at any stage of the identification, and (3) opportunity to easily reach explanations of characters or more information about species. In a comparison of 14 identification programs and six interactive keys on the internet, the best keys, according to the three fundamental attributes and other important criteria, were selected: the programs Intkey, Linnaeus II, Lucid, Taxis, XID, and the internet key PollyClave 2 (http://www.borealis.nu/exjobb/Index_en.html). The various identification tools in this regard are summarized in Table 21.3.

In 1988, DELTA was adopted by the International Working Group on Taxonomic Databases for Plant Sciences as a standard language for compilation, analysis, and recognition of taxonomic data. In 2005, FreeDELTA was taken over by sourceforge.net, the largest global web-based platform for developing free software. FreeDELTA is built on program languages such as Python, C++, and Object Pascal libraries and uses an open source code that allows users to develop the program by themselves according to their needs. Currently there are 68 datasets in FreeDELTA and 22 datasets in the NaviKey server.

2.2.2 Digitization Tool

Digitization is used to select the identifying information of the plant under investigation. The identifying information is the detailed pro forma of the plant including nomenclature, genus, species, and other information. These databases are intensively utilizable to search for plants in a particular geographical region and collate information about those plants. The major digitization tools for the creation of databases are summarized in Table 21.4.

2.2.3 Biodiversity-Based Databases

Biodiversity-based databases ensemble and detail information regarding the spectrum of biotic organisms in a particular ecological niche. They actually encompass detailed data about the species, specimen, taxonomic distribution, or phylogenetic hierarchy of the biomass in the particular niche. These kinds of databases collate data regarding either superficial biodiversity of flora or fauna in that particular ecological habitat (e.g., species or taxonomic distribution of biotic lives) or consummate molecular biological information extracted from different species of that particular habitat. The significance of the second algorithm is that it is particularly conducive to searching, exploring,

TABLE 21.5 Various	Digitizatioi	n loois for identification of	Natural Flouucis
Main Identification Tool	Type of Natural Product	Brief Description	URL
Open Identification API	Plant, animal	A computer-assisted program to identify flora or fauna with free software techniques	http://wwbota. free.fr/ Identification/
OpenKey	Plant	A Delta database encrypted by 200 characters to identify any plant in North Carolina Piedmont	http://www. ibiblio.org/ openkey/intkey/ web/intro.html
PANKEY	Plant, animal	A software program to describe taxonomy of an unknown flora or fauna; also describes numerical taxonomy (clustering and cladistics). Prepared by version 3.0 of Delta	http://www. exetersoftware. com/cat/pankey/ pankey.html
РНРКеу	Plant	A new interactive key to describe calicioid lichens and fungi of the Nordic countries. The database comprises 83 species, 27 characters, 216 character states, and related information. PHPKey is written in the HTML embedded programming language PHP	http://www. borealis.nu/ exjobb/Index_en. html
PollyClave	Plant, animal	A multiple entry identification tool created by the University of Toronto	http://prod. library.utoronto. ca:8090/ polyclave/
Rachis	Plant, animal	Software to allocate biological entities in a hierarchical system (both LINUX and MS Windows support) and an interactive key for retrieving data from them	http://rachis. sourceforge.net/
Scratchpads	Plant, animal	A database created by the Natural History Museum (UK)	http:// editwebrevisions. info/

TABLE 21.3 Various Digitization Tools for Identification of Natural Products

Continued

TABLE 21.3	Various	Digitization	Tools for	Identification	of Natural
Products—c	cont'd				

Main Identification	Type of Natural		
Tool	Product	Brief Description	URL
Stinger's Lightweight Interactive Key Software (SLIKS)	Plant	A Javascript program for biological identification	http://www. stingersplace. com/SLIKS/
Таху	Fungi		http://www. collectivesource. com/taxy/taxy. html
TeleNature	Plant		http://www3.isrl. uiuc.edu/ ~TeleNature/ projects/ telenature.html
X:ID	Plant, animal		http://uio.mbl. edu/services/key. html
Xper	Plant	Free Delta-based software for taxonomical identification and other trait analyses	http://lis-upmc. snv.jussieu.fr/lis/? q=en/resources/ software/xper2
Barcode of Life Database (BOLD) (identification by DNA barcoding)	Plant, animal	An identification portal based on sequence search and matching analysis using DNA barcoding	http://www. boldsystems.org/ index.php/IDS_ OpenIdEngine
EDIT's cybertaxonomy platform	Plant, animal	A common platform for digital analysis of cybertaxonomy, used for data storage and exchange; collections and specimens; descriptions; fieldwork; literature; and geography	http://wp5.e- taxonomy.eu/
Electronic field guide	Plant, animal	A web-based version structured by the Department of Computer Science and Biology at the University of Massachusetts, Boston, with funding from the National Science Foundation	http://wiki.cs. umb.edu/

Products—cont'd				
Main Identification Tool	Type of Natural Product	Brief Description	URL	
FreeDELTA ^a	Plant, animal		http://freedelta. sourceforge.net/	
Idenature Guides	Plant, animal	General web-based identification tool for plant, animal, fungi, insects, and other related species	http://www. discoverlife.org/ mp/20q	
LucID	Plant, animal	An interactive key-based software platform to identify or diagnose biological entities	http://www. lucidcentral.com	
Medical fungi identification website	Fungi	Identification tool for filamentous fungi of medical importance except the genera <i>Aspergillus</i> and <i>Penicillium</i>	http://www.cbs. knaw.nl/medical/ DefaultPage.aspx	
Meka	Plant		http://ucjeps. berkeley.edu/ keys/downloads/ Meka31.exe	

TABLE 21.3 Various Digitization Tools for Identification of Natural Products—cont'd

^aFreeDELTA: DELTA stands for DEscription Language for TAxonomy. FreeDELTA is the world's largest software tool that is utilized by taxonomic scientists for the compilation and accumulation of taxonomic data all over the world (http://freedelta.sourceforge.net/). FreeDELTA is a language that comprises both qualitative (binary or multistate, ordered or unordered) or quantitative (integer or real) characters. Although the software was created by Mike Dallwitz at CSIRO Division of Entomology, Canberra, Australia, in the mid-1970s, it was later used by various other taxonomic program developers such as Eric Gouda at the Botanic Gardens of Utrecht University (TAXASOFT) in the Netherlands, Nicholas Lander at the Western Australian Herbarium (DMSWIN) in Australia, Antonio Valdecasas at the Museo Nacional de Ciencias Naturales (EDEL) in Spain, Gregor Hagedorn at the Institute of Microbiology, Federal Biological Research Center (DELTAAccess) in Germany, Michael Bartley and Noel Cross at the Arnold Arboretum of Harvard University (Navikey) in the United States, Claudio Rivetti and Riccardo Percudani at the Universidy of Parma (WebDelta) in Italy, and Mauro J. Cavalcanti at Museu Nacional/Universidade Federal do Rio de Janeiro (DIANA) in Brazil.

or interconnecting different biological entities in that specific domain. This unveiling, in turn, helps to predict biological properties of a cluster of entities before performing any operation on them. These can be divided into four major databases

- 1. Biodiversity databases for all classes.
- 2. Plant-based biodiversity databases.
- 3. Animal-based biodiversity databases.
- 4. DNA barcode-based biodiversity databases.

TABLE 21.4 Major Digitization tools for the Creation of Databases						
Name of the Database	Coverage	Brief Description	Website			
Bauble	Flora	Free web interface software. It generates reports through XSL and Mako formatters.	http://bauble. belizebotanic.org/			
Bibmaster	Flora, fauna	Database application	http://www.gbif.es/ bibmaster/bibmaster_ Inphp			
Biota	Flora, fauna	Do	http://viceroy.eeb. uconn.edu/biota			
Biotica	Flora, fauna		http://www.conabio. gob.mx/biotica/cms/ index.php			
Brahms	Flora	Digitization tool to collate all the data of botanical species especially in the United States	http://dps.plants.ox.ac. uk/bol/BRAHMS/Home/ Index			
Herbar	Flora	General digitization program involved in showcasing, storing, and indexing information of traditional products	http://www.gbif.es/ herbar/herbar_Inphp			
KE Emu- Electronic Museum	Flora <i>,</i> fauna	Do	http://www.kesoftware. com/emu-home.html			
Pandora	Flora	Do	http://www.ibiblio.org/ pub/academic/biology/ ecology+evolution/ software/pandora/			
Specify 6	Flora, fauna	Do	http://specifysoftware. org/			
Zoorbar	Flora <i>,</i> fauna	Do	www.gbif.org/resource/ 81736			

TABLE 21.4 Major Digitization Tools for the Creation of Databases

2.2.3.1 Biodiversity Databases for All Classes

The biodiversity databases for all classes include databases where diverse species of a biotic community irrespective of flora or fauna have been created inside the database. A brief description of the databases is summarized in Table 21.5.

TABLE 21.5 Biodiversity Databases for All Classes					
Database	Brief Description	Website			
Biodiversity Heritage Library (BHL)	Collection of digitized literature including images in open access form	www. biodiversitylibrary. org			
Integrated TaxonomicInformation System (ITIS)	Taxonomic information about plants, animals, fungi, and microbes especially in North America	http://www.itis. gov/			
Species 2000	A global database of biodiversity of all known species in the world. It is basically a collaborative program between CODATA (International Council for Science: Committee on Data for Science and Technology), IUBS (International Union of Biological Sciences), and the IUMS (International Union of Microbiological Societies) of the early 1990s. It is an associate member in the Global Biodiversity Information Facility (GBIF) , a data provider to EC LifeWatch, and is acknowledged by the United Nations Environment Program (UNEP) together with the Convention on Biological Diversity (CBD)	http://www. sp2000.org/			
Tree of Life (TOL)	A biodiversity database compiled by biologists all over the world containing more than 10,000 web pages regarding biodiversity of organisms together with their phylogenetic information	http://tolweb.org/ tree/phylogeny. html			
TreeBASE	Basically deals with phylogenetic information about trees formed by the Phyloinformatics Research Foundation, Inc.	http://www. treebase.org/ treebase-web/ home.html			
Barcode of Life Databases (BOLD)	Basically integrates biodiversity information all over the world by DNA barcodes. Since the DNA barcode of certain genes (such as <i>matK</i> , <i>rbcL</i> , mitochondrial cytochrome oxidase c subunit-I [COI], and its genes) shows variation from species to species, it is used as a reference for species identification. BOLD comprises such DNA barcodes to identify unknown species	http://www. barcodinglife.org/ views/logInphp			

TABLE 21.5 Biodiversity Databases for All Classes

TABLE 21.5 Diodiversity Databases for All Classes—cont u					
Database	Brief Description	Website			
Global Invasive Species Database (GISD)	A database about invasive species across the globe. It was formed by the Invasive Species Specialist Group (ISSG) of the Species Survival Commission of the IUCN (International Union for Conservation of Nature). The development of GISD was initiated by the Global Invasive Species Programme and other statutory bodies such as the National Biological Information Infrastructure, Manaaki Whenua-Landcare Research, the Critical Ecosystem Partnership Fund, the University of Auckland, and private donations	http://www.issg. org/database/ welcome/			
Invasive and Exotic Species	Deals with invasive and exotic species of North America	http://www. invasive.org/			
Invasive Species in Canada	Deals with invasive species of Canada	http://www. invasivespecies. gc.ca/english/ view.asp?x=1			
Biodiversity of Mexico VN	A Mexican database	http://www. vivanatura.org/ About%20VN. html			
Natural History Museum	Biodiversity museum, i.e., database of the United Kingdom. Has also been developed in America and other countries	http://www.nhm. ac.uk/nature- online/life/index. html			
South African National Biodiversity Institute database	A South African biodiversity database	http://www.sanbi. org/frames/ infofram.htm			
Arctos	A database for finding information about biodiversity using different identifier tools	http://www.arctos. database.museum			
ASEAN Biodiversity Information database (BISS)	A biodiversity system of ASEAN flora and fauna; the database is maintained to be accessible by all the users across the globe	http://www. aseanbiodiversity. org			

TABLE 21.5 Biodiversity Databases for All Classes-cont'd

TABLE 21.5 Biodiversity Databases for All Classes—cont'd					
Database	Brief Description Website				
Convention on International Trade in Endangered Species (CITES) species database	A database regarding the Convention on International Trade in Endangered Species of Wild Fauna and Flora. This database maintains the list so that the existence of such kinds of species is not threatened over the world.	All species ever listed in CITES Appendices I, II, and III			
iNATURALIST	A site for reporting personal observations of any plants or animals in the world.	www.inaturalist. org			
iSpot	Free international database about ecosystems and associated flora and fauna	www.iSpotnature. org			
Natural History Information System	A collection of databases of natural products. This is basically a DINA project (DIgital Information System for NAtural History Collections) involving all types of collections such as zoological, botanical, geological, and paleontological collections, living collections, biodiversity inventories, observation records, and molecular data	www.dina- project.net			
NatureServe	A natural biodiversity system	www.natureserve. org			
WikiSpecies	A free database formed by the Wikimedia foundation	https://species.m. wikimedia.org			
Pan European Species directories Infrastructure	A taxonomic database for Europe	www.eu-nomen. eu			
NatureDATA	A natural products database in the United Kingdom	naturedata.org.uk			
Georgia (country) biodiversity website	A database maintained in Georgia University, USA	biodiversity- georgia.net			
Biodiversity Heritage Library (BHL)	A database containing over 2 million volumes of biodiversity literature involving two centuries and is jointly maintained by the United States and the United Kingdom. As of October 2010, BHL had coded 31,397,395 pages from 83,616 volumes, and from 43,140 titles.	www. biodiversitylibrary. org			

TABLE 21.5 Biodiversity Databases for All Classes-cont'd

2.2.3.2 Plant-Based Biodiversity Databases

There are several databases based only on plants or flora as summarized in Table 21.6.

2.2.3.3 Animal-Based Biodiversity Database

There are several databases that contain digitized information about animals, as summarized in Table 21.7.

TABLE 21.6 Digitized Databases Based on Plants or Flora				
Database	Brief Description	Website		
Algae Base	A botanical database especially focused on algae belonging to aqueous, land, and marine organisms	http://www.algaebase. org/		
Australian Biological Resources Study Flora online	A specifically designed database compiling information on Australian biodiversity involving plants	http://www. environment.gov.au/ biodiversity/abrs/ online-resources/flora/ main/		
DiaMedBase	A database particularly covering information about the plants to cure diabetes	http://www. progenebio.in/DMP/ DMP.html		
Encyclopedia of Indian Medicinal Plants	Database containing information on Indian medicinal plants	www.medicinalplants. in		
Plants For A Future (edible and medicinal plants)	A database comprising more than 7000 medicinal plants where each plant is categorized on the basis of its edibility and therapeutic use	http://www.pfaf.org/ user/plantsearch.aspx		
Royal Botanic Garden, Edinburgh	A database containing information about plants inside the Royal Botanical Garden as well as plants involved in specific research projects such as ADIAC Diatom Image Database, DIADIST Website, Apiales Resource Centre, Southeast Asian Begonia Database, etc.	http://www.rbge.org. uk/databases		
United States Department of Agriculture (USDA) Plants Database	A database about vascular plants, mosses, liverworts, hornworts, and lichens of the United States and its territories. It contains more than 50,000 images of such plants	http://plants.usda.gov/		

TABLE 21.6 Digitized Databases Based on Plants or Flora

THE 2110 Digitzed Databases based on Flants of Flora Contra				
Database	Brief Description	Website		
Fungal Records Database of Britain and Ireland	Mostly focused on the fungal databases of Britain and Ireland; however, it contains information about more than 2 million fungal records	http://www. fieldmycology.net/		
Index Fungorum	A project containing information with all formal names (scientific names) of the fungal kingdom. It is a joint collaborative project partnered by the Royal Botanic Gardens, Kew, Landcare Research, and the Institute of Microbiology, Chinese Academy of Sciences	http://www. indexfungorum.org/ Names/Names.asp		
MycoBank	A fungal database run by the International Mycological Association	http://www. mycobank.org/		
USDA fungal database	A database based on US national fungus collections	http://nt.ars-grIngov/ fungaldatabases/		

TABLE 21.6	Digitized Database	s Based on	Plants or Flora-cont'd
-------------------	--------------------	------------	------------------------

TABLE 21.7 Databases About Animals Across the G	lobe
---	------

Database	Brief Description	Website
Amphibian Species of the World	This database contains three types of amphibian species: anura (frogs), salamanders (Caudata), and gymnophiona (caecilians). This database contains 7645 amphibian species, of which 6745 are frogs and toads, 695 are newts and salamanders, and 205 are caecilians	http://research.amnh.org/ herpetology/amphibia/ index.php
Antbase	Database based on all ant species around the world	http://antbase.org/
Australian Biological Resources Study Fauna Online	A zoological database based on Australian biodiversity.	http://www.environment. gov.au/biodiversity/abrs/ onlineresources/fauna/ index.html
Biosystematic Database of World Diptera	Knowledge database about dipterian animals. More than 150,000 species of Diptera are described under more than 250,000 names	http://www.sel.barc.usda. gov/Diptera/

Butterflies and Moths of the World	Database about butterflies and moths.	http://www.nhm.ac.uk/ research-curation/projects/ butmoth/
CephBase	Knowledge database about cephalopods around the world	http://www.cephbase. utmb.edu/
Fishbase	Knowledge database about fishes around the world	Fishbase Fauna http:// www.fishbase.org/home. htm
Mammal Species of the World	Knowledge database about mammalian species around the world	http://vertebrates.si.edu/ mammals/msw/
The Reptile Database	Knowledge database about reptiles around the world	http://www.reptile- database.org/
Universal Chalcidoidea Database	Knowledge database about Chalcidoidea group of wasps around the world	http://www.nhm.ac.uk/ research-curation/projects/ chalcidoids/index.html
Zoology: Extinct and Endangered database	Organized and integrated information database about extinct and endangered species of the world	http://www.oum.ox.ac.uk/ database/zoology/extinct. html

TABLE 21.7 Databases About Animals Across the Globe-cont'd

2.2.3.4 DNA Barcode-Based Databases

2.2.3.4.1 Barcode of Life Database Barcode of Life Database (BOLD) is a DNA barcode-based biodiversity database that has four portals. The first is a public data portal that contains 1.7 million DNA barcode sequences, which is freely searchable and categorized by geographical, taxonomical, and depository databases. The second is Barcode Index Numbers, which comprise several numbers signifying specific barcodes, a DNA barcode education portal, which is explorable by students and scientists and could be enriched by the latter through submitting new barcodes, the third portal being Barcode Index numbers and the fourth portal is the workbench that allows scientists to work and analyze DNA barcodes on a common platform. The current coverage of BOLD is given by Table 21.8.

2.2.3.4.2 *Korean Barcode of Life* This is a barcode database designated to elucidate barcodes of all Korean species. Currently, the database contains 5531 barcode sequences from 2429 Korean species.

TABLE 21.8 Database Having Barcode of Life Database (BOLD) Coverage				
Items	Number			
Barcode clusters for animals (Barcode Index Numbers)	495,328			
All sequences	6,175,187			
Barcode sequences	5,339,196			
Animals	176,400			
Plants	65,732			
Fungi and other life forms	20,838			

2.3 Metadata Portals

Since the biological databases are interconnected and provide full information upon being integrated in one common data portal, several metadata portals in the digitization of traditional knowledge have been created to access primary databases by searching through secondary search engines. Such metadata engines are provided in Table 21.9.

3. **BIODIVERSITY ANALYSIS**

Several interdisciplinary approaches have been emerging over the last few decades to organize, narrate, collate, and then use biodiversity data for various purposes such as phylogenetic analysis, evolutionary analysis, metabolic pathway analysis, and many others [11a]. Various bioinformatics, molecular biology, pharmacogenomics, cheminformatics, and other approaches have emerged to process the biodiversity data available across various databases. Thus to cope with this, a plethora of analytical tools has evolved to analyze the biodiversity database. Selected analytical tools based on their usage in this process are summarized in Table 21.10.

4. VIRTUAL SCREENING OF NATURAL PRODUCTS FROM DATABASES

Virtual screening of natural products is the in silico process of screening a large database of natural products obtained in a particular or diverse ecological niche to achieve a specific pharmacological response. The in silico process depends on various bioinformatics, involving docking and network pharmacology as described next.

Coverage				
Database	Brief Description	Website		
Atlas of Living Australia (ALA)	An online repository of Australian biodiversity including Australian flora, fauna, and fungi. This national database of Australian biodiversity provides a platform to access and search information on specific components	http://www.anbg.gov. au/cpbr/program/hb/ index.html		
Australian Virtual Herbarium (AVH)	Same as above; however, the major coverage is plant species	http://www.ersa.edu. au/avh/index.jsp		
Encyclopedia of Life (EOL)	A metadatabase aimed at collating information about each and every living being of 1.9 million species discovered so far on earth. It is proposed to link information on each species with an infinitely long page containing all the information including images, videos, etc. about the species	http://www.eol.org/ home.html		
Global Biodiversity Information Facility (GBIF)	Single data management portal through which all taxonomical, biogeographical, hierarchical, and genomic information about various species of the world can be accessed	http://www.gbif.org		
iSpecies	A zoological species database created by Glasgow University, Scotland	http://darwInzoology. gla.ac.uk/~rpage/ ispecies/index.php		
LifeWatch	A European biodiversity database specially constructed to preserve all environmental biodiversity by accessing such information in Europe	http://www.lifewatch. eu/index.php?id=411		
Ocean Biogeographic Information System (OBIS)	This is mainly focused on collecting, compiling, and processing biodiversity present in oceans. Currently OBIS possesses 27.7 million pieces data from 126,000 species from 849 databases. It is jointly run with various other digitization agencies such as GBIF, Consortium for Biodiversity of Life (CBOL), and Taxonomic Database Working Group (TDWG)	http://v2.iobis.org		

TABLE 21.9 Metadata Portals Having Barcode of Life Database (BOLD)

 Coverage

0	coverage contra				
Database	Brief Description	Website			
SpeciesBaseA species database supported by the Reference Center on Environmental Information (CRIA) to collate and share data regarding various botanic and zoological species across the world. It is structured over Visual Basic for Application (VBA) and Microsoft Access. The user interface designed on the BONABIO information taxonomic database adopted by the Federal University of Parana system		http://www. speciesbase.org/			
Universal Biological Indexer and Organizer	This is a combinatory database where biological data from different resources are collected and presented in a meaningful, legible, and organized way. Web services such as XML and SOAP are used for processing the data. It is basically known as Taxonomic Name Server, interconnected as Name Bank (11,106,374 records) and Classification Bank (90 classifications)	http://www.ubio.org			

TABLE 21.9	Metadata	Portals	Having	Barcode	of Life	Database	(BOLD)
Coverage-	cont'd						

4.1 Screening Through Network Pharmacology

Different biodiversity databases, in addition to organizing information regarding flora, fauna, or microbiome within a particular area or across the globe, also help in drug discovery with the bioinformatics approach. Over the last few decades attempts have been made to organize the mammoth data of biodiversity in drug discovery processes by the virtual screening method. The most common method of such virtual screening is combining network pharmacology or polypharmacology [12–14] with molecular docking. Since network pharmacology suggests that multiple genes or proteins are involved in a particular phenotype or disease, responsible proteins are searched for first while considering a particular disease. The protein structures are then downloaded from a protein databank and reported compounds from various biodiversity databases are docked onto the particular set of proteins. The "best hit" compounds are then taken as leads for subsequent drug discovery [15,16]. The flow chart for performing virtual screening is summarized in Fig. 21.1.

Software	Use	Category	URL
ADE4	Ecological analysis	S, F	http://cran.rproject.org/src/contrib/Descriptions/ ade4.html
ADAPTS	Paleobiological analysis	S, F	http://www.paleodb.org/paleosource/code.php? stage=download&project_no=4
APE	Phylogenetic and diversification analyses	S, F	http://pbil.univ-lyon1.fr/R/ape/
CODA	Nature conservation and planning	S, F	http://members.ozemail.com.au/~mbedward/ coda/coda.html
DIVA-GIS	Mapping and ecological modeling	S, F	www.diva-gis.org/
Ecopath with Ecosim (EwE)	Ecological modeling (marine environment, including the effects of fishing)	S, F	http://www.ecopath.org/index.php? name=About
GARP	Ecological modeling	S, F	http://nhm.ku.edu/desktopgarp/
GRASS GIS	GIS is used for geospatial data management and analysis	S, F	http://grass.itc.it/
LAMARC	Population studies	S, F	http://evolution.genetics.washington.edu/ lamarc.html
MAXENT	Ecological modeling (species distribution)	S, F	http://www.cs.princeton.edu/~schapire/ maxent/
MEGA	Phylogenetic analysis	S, F	http://www.megasoftware.net/
Mesquite	Evolutionary analysis	S, F	http://mesquiteproject.org/mesquite/mesquite. html

Molphy	Phylogenetic analysis	W, F	http://bioweb.pasteur.fr/seqanal/interfaces/prot_ nucml.html
MrBayes	Phylogenetic analysis	S, F	http://mrbayes.csit.fsu.edu/index
PAST (PAlaeontological STatistics)	Paleontological statistics	S, F	http://folk.uio.no/ohammer/past/
PATN	Pattern analysis	S, C	http://www.patn.com.au/
PopTools	Population dynamics and ecological model analysis	S, F	http://www.cse.csiro.au/poptools/
PAUP	Phylogenetic analysis	S, C	http://paup.csit.fsu.edu/
PHYLIP	Phylogenetic analysis	S, F	http://evolution.genetics.washington.edu/ phylip.html
Rarefaction calculator	Diversity estimation and indices	W, F	http://www2.biology.ualberta.ca/jbrzusto/ rarefact.php
TNT	Phylogenetic analysis	S, F	http://www.cladistics.com/aboutTNT.html
TreeAlign	Phylogenetic analysis	W, F	http://bioweb.pasteur.fr/seqanal/interfaces/ treealign-simple.html
TreeView X	Phylogenetic tree visualization	S, F	http://darwInzoology.gla.ac.uk/~rpage/ treeviewx/

C, Commercial; F, free; S, standalone application; W, web based application.

Reprinted with permission from J. Gaikwad, P.D. Wilson, S. Ranganathan, Ecological niche modeling of customary medicinal plant species used by Australian Aborigines to identify species-rich and culturally valuable areas for conservation, Ecol. Modell. 222 (2011) 3437–3443.

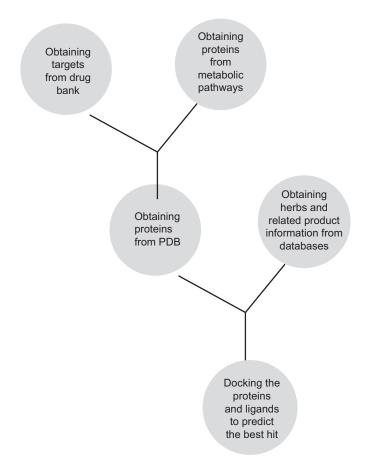


FIGURE 21.1 Tentative methodology for virtual screening of natural products.

For example, Gu et al. [15] reported that Universal Natural Products Database (UNPD)-derived natural products screening yielded five medicinal plants, namely, *Hypericum perforatum*, *Ganoderma lucidam*, *Holarhena antidysenteria*, *Celastrus orbiculatus*, and *Marraya eucherestifolia* as having antidiabetic activity. The authors used the drug target networks (DTN) methodology to explore the new set of plants against the aforementioned disease from a library of 208,000 natural products [15].

4.2 Screening Through Cheminformatics

In a review, Medina-Franco [17] reported various natural products databases, cheminformatics methods of their screening, and ultimately lead findings for various pharmacological responses thereof. For example, he acknowledged

that the database ZINC containing more than 19 million molecules, traditional Chinese medicine (TCM) database, UNPD containing 197,201 molecules, UNIIQUIM database (Mexico), and NuBBE database (Brazil) were significantly large databases. These databases have been reported to be used for drug discovery purposes. For example, a web server-based docking of TCM followed by de novo ligand design has been acknowledged by Tsai et al. [18]. Moreover, Chen et al. [19] reported discovery of pancreatic triacylglycerol inhibitors through computational approaches in TCM.

4.2.1 Analysis of Structural Diversity and Complexity

Structural complexity is the hallmark signature of natural product molecules. However, drug discovery in such conditions is aided via two digitized approaches. One is application of structural fingerprints and the other is using chemical scaffolds [20,21]. Apart from benzene and acyclic molecules, flavones, coumarins, and flavanones have been identified as the most frequent scaffolds across the various natural products databases [12].

4.2.2 Structure Promiscuity Index Difference

Dandapani and Marcaurelle [22] in a study reported that the structural diversity of natural products eventually leading to generation of diverse pharmacological activities is due to diverse fraction of unsaturation in various natural products [22]. In continuation, Clemons et al. [23] screened a library of 15,000 compounds, both natural and synthetic, over 100 diverse proteins involved in various metabolic pathways. They later acknowledged that structural diversity actually leads to specificity in substrate-protein binding, finally converging in specific pharmacological activity. To design this in silico, they created an index, namely, Structure Promiscuity Index Difference, to calculate changes in protein binding due to small changes in structure [23].

4.2.3 Chemical Space—Importance and Evaluation

One of the significant approaches to the digitized evaluation of natural products is evaluation of chemical space. It can be defined as defined by Dobson: "the total descriptor space that encompasses all the small carbon-based molecules that could in principle be created" [23a]. In another concept, Lipinsk and Hopkins mentioned that "chemical space can be viewed as being analogous to the cosmological universe in its vastness, with chemical compounds populating space instead of stars." [24]. The evaluation of chemical space has been extensively used by various authors [24a], [15,25–27]. The analysis mainly relies on ChemGPS-NP_{web}, an online tool for chemical space analysis. Web analysis is basically reliant on principle component analysis, which divides it into four dimensions and maintains specific compound descriptors in each dimension.

4.2.4 Application of Cheminformatics to Drug Discovery

The cheminformatics approach has been applied to drug discovery to successfully unfold various natural products for a set of pharmacological responses. For example, Cao et al. [28] screened more than 4000 natural products from 100 medicinal plants against estrogen receptors (ER α) and (ER β), which eventually led to the discovery of 11 selective nonsteroidal estrogen receptor modulators.

Guasch et al. [30] discovered five new drug leads from 89,000 natural products for peroxisome-activated receptors [30]. In continuation, Ngo and Li [31] developed molecules for Alzheimer's disease from a pool of natural products [31]. The authors screened a library of 342 compounds from Vietnamese plants and docked them subsequently against a set of amyloid (A β_{1-40} and A β_{1-42}) peptides to reveal five compounds showing promising potential against Alzheimer's disease. Also Gu et al. [32] performed virtual screening of 676 compounds from a TCM database with 37 proteins related to type 2 diabetes mellitus [32].

5. BIOINFORMATICS APPROACH TO THE DIGITIZATION OF KNOWLEDGE ON NATURAL PRODUCTS

5.1 Quality Control of Herbals Using Next Gen Sequencing

Herbal products are often supplied with supplements from various other natural products. Hence a proper, defined, quality-controlled approach to evaluate these other products is still a difficult task. Ivanova et al. [33] proposed that next gen sequencing followed by DNA barcoding could elucidate the quality of herbal supplements. In this study the authors demonstrated a DNA sequencing approach for taxonomic authentication of herbal supplements from five medicinal plants: *Echinacea purpurea, Valeriana officinalis, Ginkgo biloba, H. Perforatum*, and *Trigonella foenum-graecum*. Using DNA barcoding of *rbcL* and *ITS2* regions the authors successfully accomplished the identification of the foregoing medicinal plants. In addition, the authors also claimed to detect adulterants mixed with the herbal supplements in these food formulations. Interestingly, the amount of contaminants as well as products due to plant—fungi interactions could also be detected by quantitative analysis of next gen sequencing [33].

5.2 Expressed Sequence Tags

In 2012 Sharma and Sarkar described various bioinformatics approaches to discover natural products from various resources, e.g., genomics and transcriptomics data to categorize phylogenetic information about medicinal plants. The authors reported the contribution of "expressed sequence tags" (ESTs) for transcriptomic data organization in universal data portals such as

National Center for Biotechnology Information (NCBI). In addition, they also reported the EGENES database for more authentic information on plant transcriptomic data with better organization of ESTs to correlate genetic information with functional information [34]. In the Medicinal Plants Genomic Resource Database, such complete plant transcriptomic data have been created.

5.3 Simple Sequence Repeats

Apart from ESTs, the authors also acknowledged utilization of simple sequence repeats (SSRs) to compile transcriptomic information of medicinal plants. SSR markers have been shown to be most advantageous because of their multiallelic nature, reproducibility, codominant inheritance, high abundance, and extensive genome coverage [86]. SSRLocator is an example of a computational approach for detection and characterization of SSRs and minisatellite motifs [35].

5.4 Constructing Network Biology Through Chemogenomics

Network biology is an important tool to construct networking maps to unlock the role of various genes in multiple biological functions inside the body. Since body metabolic pathways are usually constructed of various genes or proteins in an orchestrated way, which often involve a spectrum of genes mutually overlapping in nature, perturbing the functional outputs of those genes often elucidates various metabolic pathways inside the body [36]. The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a reliable database that provides information on such metabolic proteins as well as the pathways [37]. In addition, there is a web server called Path Pred [38] that predicts pathways of multistep reaction for a given query compound, starting with a similarity search against the KEGG COMPOUND database. With the help of these chemogenomics databases, network biology is constructed, which on in silico screening leads to the path of drug discovery. For example, the Catharanthus roseus gene-metabolite coexpression network was dissected and ultimately led to the discovery of genes associated with the biosynthesis of terpenoid indole alkaloids [39].

5.5 Network Biology Models—Distance-Based Mutual Information Model

In this model, a mutual information entropy and herb distance metric is used to score herb interactions [40] and constitutes an herb network with the combination rules of TCM. Thus, network-lined herb—herb interaction could produce therapeutic activity, which has already been reported to produce angiogenesis activity.

5.6 Quantitative Composition-Activity Relationship Study

Since all herbal components and constituent structures have not yet been discovered or elucidated, quantitative structure—activity relationship (QSAR) studies relating plant constituents and their bioactivities are difficult to perform. Hence the quantitative composition—activity relationship (QCAR) study has been invented to predict plant extract activity in silico [41]. Although this method is still not very accurate and needs full experimental design or bioassays to predict the correct score [42], it could be justifiably used to foretell bioactivity of plant-based extract activity on a computer chip. With approaches such as artificial neuronal network and support vector machines (SVM), prediction with QCAR has been simpler than previously encountered. For example, Nayak et al. [43] reported that adjusting components of a TCM-based herb Qi-Xue-Bing-Zhi-Fang with the aforementioned methods significantly reduced the blood cholesterol level in rats.

5.7 Network Target-Based Identification of Multicomponent Synergy

This methodology of bioinformatics-based digitization of traditional knowledge consists of two components: topology score and agent score. In the first approach, a total network of plant species is analyzed based on their contribution to different diseases and drug actions, and a topology score is assigned. The agent score is given based on their plant phenotypes. Afterward, based on these scores, a synergistic score is given to evaluate the synergistic action between two medicinal plants [44].

5.8 Application of the Bioinformatics Approach for Drug Discovery From Traditional Plants

Phylogenetic analysis of natural products revealed that it has direct correlation with biological activity. Such analysis coupled with gas chromatography-mass spectrometry studies of an alkaloidal fraction of *Phaedranassa dubia* revealed a direct correlation of its acetylcholinesterase inhibitory activity with alkaloids such as galanthamine or lycorine [45]. Anticancer drugs were developed by building network models using a bioinformatics-guided approach [46]. Furthermore, the QSAR-based approach with natural products evolved immunomodulatory compounds; cleomiscosin molecules (A, B, C) were discovered using the QSAR approach [47]. In addition, virtual screening of natural products led to the evolution of peroxisome proliferator-activated receptors (PPARs). Petersen et al. constructed a pharmacophore-based model of 13 PPAR-based partial agonists from *Pistacia lentiscus* from the Chinese Natural Products Database. Virtual screening revealed an oleoresin from the aforementioned plant to have a potential PPAR activator effect [48].

5.9 In Silico Docking

Docking is one of the popular in silico approaches to screen a library of compounds having medicinal interest. This approach is also employed in the case of natural products, because natural products are a diverse set of secondary metabolites and without virtual screening, isolation and subsequent bioactivity estimation are often tedious and complicated jobs. However, docking strategies have evolved a set of newer compounds that can be used as leads for emancipation of medicinal compounds. For example, Zhong et al. reported an inducible nitric oxide synthetase (iNOS) inhibitor of a quinoline derivative, which can be used as scaffold for further designing associated compounds [49]. The author reported docking of more than 90,000 natural products from the ZINC database in silico to evolve one successful compound against iNOS. Again, Li et al. [49a] reported discovery of a potential anticancer compound (breast cancer) through molecular docking by screening of 11,247 compounds from the ZINC database against human epidermal growth factor 2. Likewise, docking has been used to screen a plethora of drugs such as antiinflammatory IKKB inhibitors [50,51], acid sphingomyelinase inhibitors [52], PPAR γ partial agonists, dipeptidyl peptidase inhibitors for antidiabetic drugs [30], STAT 1 and STAT 3 inhibitors [53], multidrug efflux pump inhibitors for reducing antibiotic resistance [54], marine natural products acting on acetylcholine binding protein [55], ellagic acid derivatives on selected enzymes of Mycobacterium tuberculosis [56], and others. Thus docking has been a promising alternative approach to drug discovery through digitization of natural products.

6. INVERTNET

InvertNet is a database containing information about invertebrate species across the globe [57]. The database is designed and maintained by the US National Science Foundation's Advancing Digitization of Biological Collections program, and provides digital access to approximately 60 million specimens housed in 22 arthropods (primarily insects). They provide a 3D image of every insect under this category and label them with a unique digital code identifier. This database provides a unique solution to the digital database monitoring system mainly focusing on insects.

7. SCREENING FROM ACTINOBACTERIA

Doroghazi et al. [58] proposed a newer path for drug discovery with a digitized study of natural products. They undertook Actinobacteria as a model of natural product source. Since organisms classified as actinomycetes are reported for natural product biosynthetic gene clusters [59], the authors used the bioinformatics approach to combine 11,422 gene clusters with 4122 gene cluster families (GCF). Subsequent studies revealed 830 genomes from the

microorganism, which exhibited coding for hundreds of future leads. In this process, peptidogenomics tools are used to investigate new peptides from a set of mass spectrometry-based peptide fragmentation datasets [60]. Various other bioinformatics tools have been used such as NaPDoS, a natural product domain finder that works on clustering phylogenetically correlated secondary metabolite production gene clusters [61], antiSMASH, a rapid identification, annotation, and analysis of secondary metabolites producing genome sequences from bacterial and fungal origins [62], ClusterMine360, a database for microbial polyketide synthetase [63], SEARCHPKS, a program for investigating polyketide synthetase domains [64], ASMPKS, an analysis program for molecular polyketide synthase domains [85], DoBISCUIT, a database for secondary metabolite producing gene clusters [65], NORINE, a database for nonribosomal peptides [66], PKMIner, a database for exploring type-II polyketide synthetase [67], and others.

Ikram et al. [16] used a digitization screening model to isolate several compounds as neuraminidase inhibitors, i.e., active against influenza. The authors used a docking approach to hit 3000 compounds from the Malaysia Natural Products Database to find the best 12 hits as leads for antiinfluenza drugs. Lead compounds, their docking scores, and IC_{50} values are provided in Table 21.11.

8. PREDICTION INFORMATICS FOR SECONDARY METABOLOMES

For the prediction of secondary metabolites from genetic subsets in natural products, Skinnider et al. published a report of a new web-based software design [68] that they called Prediction Informatics for Secondary Metabolomes. In this web user interface, the software has several components. One is the BLAST search program to find the homologous sequence of the gene subspace under investigation, it is then applied to hidden Markov models to identify different protein domains such as polyketide synthetase domains, transacting acyl transferase and adenylation domains, deoxysugar biosynthesis domains, β -lactam-specific domains, etc. The other components tools are HMMER (version 3.1) for hidden Markov model searches, the Chemistry Development Kit (version 1.4.19) for chemical abstractions, BioJava (version 3.0.7) for sequence translation, RDKit (version 1.7) for vector image generation [68].

9. BIOINFORMATICS TO NATURAL PRODUCTS THROUGH SYNTHETIC BIOLOGY

Bioinformatics is a subject that creates a bridge between genomic data and natural product discovery. Several tools have been discovered that have been

Database			
Compounds	Autodock Score (kcal/mol)	IC ₅₀ (μM)	% Inhibition (at 250 µg/mL)
ο OH HOHOHOH α-mangostin*	-8.87	91.95 ± 0.09	$\begin{array}{l} 93.08 \pm 0.04 \\ (at \; 609 \; \mu \text{M}) \end{array}$
O OH O UH HO O OH Rubraxanthone*	-9.85	89.71 ± 0.08	$\begin{array}{l} 92.42 \pm 0.12 \\ (at \; 609 \; \mu \text{M}) \end{array}$
HO HO Garcinone C*	-8.85	95.49 ± 0.08	$\begin{array}{l} 90.13 \pm 0.02 \\ (at \; 603 \; \mu \text{M}) \end{array}$
OH O OH OH OH OH Gartanin*	-11.07	126.64 ± 0.13	$\begin{array}{l} 80.25 \pm 0.32 \\ (at \ 631 \ \mu \text{M}) \end{array}$
HO HO HO HO Daucosterol	-8.99	275.45 ± 0.03	$\begin{array}{l} 60.65 \pm 0.29 \\ (at \; 433 \; \mu \text{M}) \end{array}$

TABLE 21.11 Neuraminidase Inhibitors From Malaysia Natural ProductsDatabase

Continued

TABLE 21.11	Neuraminidase	Inhibitors	From	Malaysia	Natural Products
Database—c	ont′d				

Autodock Score(at 250Compounds(kcal/mol)IC50 (μM)μg/mL)	al/mol) IC_{50} (μ M) (at 250 μ g/mL)	
		$\mu g/\Pi L$
HO Momordicin I		
$-10.21 \ge 250 \qquad 21.42 \pm 0.5 \\ (at 550 \ \mu\text{M}) \\ \text{Kuguacin J}$	—	
$-10.49 \ge 250 \qquad 20.95 \pm 0.0 \\ (at 800 \ \mu M) \\ Voaphylline \qquad \qquad$		
$\begin{array}{c c} HO & OH \\ OH & OH \\ OH & OH \\ OH & OH \\ HO & OH \\ HO & OH \\ Eurycomanone \end{array} \qquad -10.89 \geq 250 \qquad 20.84 \pm 0.6 \\ (at \ 612 \ \mu M) \\ (at \ 612 \ \mu M) \\ \end{array}$		
$\begin{array}{c c} HO & OH & -9.83 \\ HO & HO & OH & 609 \ \mu M \\ HO & HO & OH & 609 \ \mu M \end{array} \\ Eury comanol & & & & \\ \end{array}$		

Compounds	Autodock Score (kcal/mol)	IC ₅₀ (μM)	% Inhibition (at 250 μg/mL)
$\begin{array}{c} HQ QH \\ OH OH OH \\ HH OH OH \\ HH OH \\ 13\alpha, 21-dihyroeurycomanone \end{array}$	-9.92	≥250	2.90 ± 0.34 (at 631 μ M)
HO HO OH HO H OH OH H H $OHHO HHO HOHHO HHO HHO$	-10.45	≥250	$\begin{array}{l} 34.50 \pm 0.27 \\ (at \; 589 \; \mu \text{M}) \end{array}$

TABLE 21.11 Neuraminidase Inhibitors From Malaysia Natural Products Database—cont'd

Reprinted from N.K.K. Ikram, J.D. Durrant, M. Muchtaridi, A.S. Zalaludin, N. Purwitasari, N. Mohamed, et al., A virtual screening approach for identifying plants with Anti H5N1 neuraminidase activity. J. Chem. Inf. Model 55 (2015) 308–316.

useful to predict the coding of natural products from a set of genes or protein clusters. The tools and their applications are shown in Table 21.12.

Bioinformatics tools are also used to study natural products using synthetic biology tools. The design of natural products from biosynthetic gene clusters depends on searching relevant sequence space from a database of millions of gene sequences. Afterward, domains are located in the gene using a domain search tool, which often relies on homology match of the unknown gene sequence with established genes of known function. The most putative or conserved sequences are found and synthesizable natural products are then designed based on pharmacophore matches against a known database of secondary metabolites. The tools related to natural product discovery from genomic clusters are summarized in Table 21.13.

10. ESNAPD, A NOVEL WEB-BASED BIOINFORMATICS TOOL

Environmental Surveyor of Natural Products Diversity (eSNaPD) is a web-based bioinformatics-based platform to discover gene clusters for the discovery of natural products. This database first relies on construction of the

TABLE 21.12 Bioinformatics Tools for Natural Products					
	Enzymes	Pathways	Regulatory Components	Chassis	
Selection	Mining	Rankling	Characterization	Genome scale modeling	
	antiSMASH	FindPath	Registry of standard biological		
		RetroPath			
		GemPath			
		Metabolic Tinker			
Prediction	Annotation	Search	Tuning	Optimization	
	antiSMASH	BNICE	RBS Calculator	Optknock	
	Enzymes	Pathways	Regulatory Components	Chassis	
	CanOE	Route Search		EMILIO	
	Enzyme Function Initiative	PathPred		SIMUP	
	SymZime	RetroPath			
		GEM-Path			

Reprinted with permission from P. Carbonell, A. Currin, A.J. Jervis, N.J.W. Rattray, N. Swainston, Y. Cunyu, E. Takano, R. Breitling, Bioinformatics for the synthetic biology ofnatural products: integrating across the Design-build-test cycle. Nat. Prod. Rep. 16 (2016) 925–932.

database and then searches for any unknown gene sequence within the database. For construction of the database, first, amplification of different natural product biosynthetic gene clusters by polymerase chain reaction (PCR) is done where various biosynthetic gene clusters such as acyl carrier protein, polyketide synthetase, adenylation, acyltransferase, condensation, dehydratase, epimerization, enoyl reductase, ketoreductase, methyltransferase, peptidyl carrier protein, and thioesterase are involved. After amplification, 95% sequence identity of the PCR-amplified genes is mined and saved as consensus sequence as a unique sequence read. In search space, once an unknown gene sequence is placed after PCR and thereafter sequencing, the sequence is searched for the highest hit in the database by the NCBI BLAST algorithm and

		Last Publication or			
Software Program or Database	URL	Document Update	Main Content/Function		
Database Focusing on Gene Clusters	;				
Bactibase	http://bactibase.pfba-lab-tun. org	2011	Web accessible database of bacteriocins		
ClusterMine360	http://www.clustermine360.ca/	2013	Web accessible database of biosynthetic gene clusters		
ClustScanDatabase	http://csdb.bioserv.pbf.hr/csdb/ ClustScanWeb.html	2013	Web accessible database of polyketide synthetase/natural product biosynthetic gene clusters		
DoBISCUIT	http://www.bio.nit_e.g_o_jp/ pks/	2015	Web accessible database of polyketide synthetase/natural product biosynthetic gene clusters		
Integrated Microbial Genome-Atlas of Biosynthetic Gene Clusters	http://img.jgi.doe.gov/abc	2015	Web accessible database of biosynthetic gene clusters		
MIBiG	http://mibig. secondarymetabolites.org	2015	Web accessible repository of biosynthetic gene clusters		
Recombinant ClustScan Database	http://csdb.bioserv.pbf.hr/csdb/ R CSDB.html	2013	In silico recombinant database		
Database Focusing on Bioactive Compounds					
Antibioticome	http://magarveylab.ca/antibio ticome	2015	Web accessible database of compounds, compound families, and mode of action		

_.__ _ - -

Continued

TABLE 21.13 Computational Tools for Natural Products Discovery—cont/d				
Software Program or Database	URL	Last Publication or Document Update	Main Content/Function	
Database Focusing on Gene Clusters	5			
ChEBI	https://www.ebi.ac.uk/c hebi/	2015	Web accessible database of compounds, compound families, and mode of action	
ChEMBL	https://www.ebi.ac.uk/c hembl/	2015	Web accessible database of bioactive compounds with drug-like properties	
Chem Spider	http://www.chemspider.com/	2015	Web accessible database of structures and properties	
KNAPSAcK database	http://kanaya.aist-nara.ac.jp/ KN ApSAcK/	2015	Web accessible database of bioactive compounds with KNAPSAcK standalone database	
NORINE	http://bioinfo.lifl.fr/norine	2015	Web accessible database of natural products	
Novel Antibiotics Database	http://www.antibiotics.or.jp/ journal/database/database-top. htm	2008	Web accessible database of compounds	
PubChem	http://pubchem.ncbi.nlm.nih. gov/	2015	Web accessible database of compounds and bioactives	
StreptomeDB	http://www.pharmaceutical- bioinformatics.de/s tr ep t ome db	2015	Web accessible database of compounds produced by streptomycetes; download of compounds and metadata	

Metabolomics Tools				
Cycloquest	http://cyclo.ucsd.edu	2011	Web application to correlate tandem MS data of cyclopeptides with gene clusters	
GNPS	http://gnps.ucsd.edu/	2015	Generic metabolomics portal to analyze tandem mass spectrometry data (dereplication and molecular networking)	
GNP/iSNAP	http://magarveylab.ca/gnp/	2015	Web application to automatically identify tandem mass spectrometry data based on genomics data	
NRPquest	http://cyclo.ucsd.edu	2014	Web application to automatically identify tandem mass spectrometry data based on genomics data	
Pep2Path	http://pep2path.sourceforge.net	2014	Standard replication data relating peptide sequence tags with biosynthetic gene clusters	
RiPPquest	http://cyclo.ucsd.edu	2014	Web application to correlate ribosomally and posttranslationally modified peptide tandem data with gene clusters	

Reprinted with permission from T. Weber, H.U. Kim, The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production, Syn. Sys. Biotechnol. 1 (2016) 69–79.

the most matched hit is calculated by e-value as convened by the NCBI BLAST algorithm. The search hits so far are further processed by hierarchical clustering and a phylogenetic relationship is established. Thus relevant domains cloned in the gene cluster are mined and established [70].

11. DNA BARCODING IN NATURAL PRODUCTS

A DNA barcode is a short segment of genomic DNA (<1000 bp), which is highly variable in sequence and used to determine hierarchical and evolutionary relationships between plants and animals [71]. This is used for species identification through sequence alignment by a series of sequence alignment algorithms [72]. For DNA barcoding, the standard genomic spaces used are chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) and maturase K (matK) as core barcodes [73]. Together with this, other regions are also used as DNA barcodes such as the spacer between photosystem II protein D1, tRNA-His (psbA-trnH spacer), the nuclear ribosomal internal transcribed spacer 2 (ITS2) in plants, and cytochrome oxidase c subunit-I (COI) for animals [74-80]. DNA barcoding has been applied to identify the contamination of natural products such as identifying consumer relevant mushrooms [81] among poisonous and nonedible mushrooms, detecting contamination and substitution of herbal products [79], herbal medicines, and dietary supplements [82], and many others. DNA barcoding is also used for phylogenetic evolution of plants [83].

12. DISCUSSION AND CONCLUSION

The knowledge of usage of traditional medicinal plant databases has become a paradigm of immense importance due to intense utilization of natural products across the globe over the last few decades. However, attempts have been made to perturb the dataset of natural products digitally due to complexity and difficulty of exploring millions of natural products by physical sorting. In accordance with this, digitization of natural products has crept in via four major approaches. Data preservation is found in various web databases wherefrom data can be mined according to the user's demands, providing virtual screening of different DTNs or databases for drug discovery, bioinformatics-guided approaches for proper utilization of natural products knowledge for lead optimization in discovery processes, and in silico approaches such as docking or molecular modeling for drug discovery. In the first approach, several UNPDs have been created such as UNPD, CMKb, ebDB, ZINC, TCM, UNIIQUIM, NuBBE, pANAPL, InvertNet, CamMED NP, and DIVERSet, where information on 560 to more than 19 million compounds has been stored based on the database. In addition, different digitization tools have been created for various purposes such as identification

tools (EDIT's cybertaxonomy platform, Electronic Field Guide, Medical Fungi Identification Website, Free Delta, and Meka), digitization tools (Bauble, Bibmaster, Biota, and Biotica), and biodiversity together with ecological modeling tools (ADE4, APE, DIVA-GIS, GARP, LAMARC, Molphy, and others). Virtual screening-based natural product search is based on in silico chemical space and docking analyses where similar property harnessing compounds are searched for based on molecular descriptors so that new leads can be discovered from those analogous natural products. For example, using chemical space analysis and subsequent docking on estrogen receptors (ER α and ER β) led to the discovery of 11 nonsteroidal estrogen modulators. Furthermore, screening 89,000 natural compounds from the ZINC database, five compounds as PPARs have been revealed. Bioinformatics-guided drug discovery from natural products analyzes sequence space to investigate the phylogenetic relationship, biodiversity, and ecological modeling. Some of the popular approaches for bioinformatics investigation use ESTs or SSR locators, restriction fragment length polymorphism, randomly amplified polymorphic DNA, and single nucleotide polymorphism to investigate the phylogenetic relationship between and potential gene clusters among the species in the database. For example, in one study, 11,422 natural product gene clusters from Actinobacteria were grouped into 4122 GCF. This ultimately led to the revelation of 830 genome datasets encompassing the potential for biosynthesizing newer drug leads. In another study, distance-based mutual information model and network target-based identification of multicomponent synergy approaches have been undertaken to generate synergy scores for ranking synergistic effects of agent combinations in a specific database. Statistical learning methods such as probabilistic neuronal network, k-nearest neighbor method, SVM, and decision tree have also been undertaken to elucidate similar gene clusters for new drug discovery. Most importantly, the DNA barcoding approach has also been used over the last few years to search phylogenetic and neighborhood relationships together with synergistic likeliness among diverse natural products. As a rule of thumb, matK, rbcL, and ITS2 sequences have been undertaken as DNA barcodes for plant investigation, while for animals, mitochondrial COI has been considered as a DNA barcode. Lastly, the in silico docking approach has been a popular tool for predictive approaches in drug discovery. This approach has been successfully implemented for drug discovery in iNOS inhibitors, antineoplastic compounds such as HER-2 inhibitors in female breast cancer, and many more. Most interestingly, a study has been performed to encode entire medicinal and aromatic plants in Africa in a digital database by using programming language C++. Thus digitization of traditional knowledge is an updated, time-economic, highly investigative, and efficient strategy for studying natural products as well as for drug discovery based on these products.

REFERENCES

- W. Altermann, J. Kazmierczak, Archean microfossils: a reappraisal of early life on Earth, Res. Microbiol. 154 (2003) 611–617.
- [2] R.T. Watson, V.H. Heywood, I. Baste, B. Dias, R. Gamez, T. Janetos, W. Reid, R. Ruark (Eds.), Global Biodiversity Assessment, 1995 ed., Panama Cambridge University Press, 1995.
- [3] E.O. Wilson, The encyclopedia of life, Trends Ecol. Evol. 18 (2003) 77-80.
- [4] J. Gaikwad, V. Chavan, Open access and biodiversity conservation: challenges and potentials for the developing world, Data Sci. J. 5 (2006) 1–17.
- [5] C.D. Becker, K. Ghimire, Synergy between traditional ecological knowledge and conservation science supports forest preservation in Ecuador, Conserv. Ecol. 8 (2003) 1.
- [6] R. Govaerts, How many species of seed plants are there? Taxon 50 (2001) 1085-1090.
- [7] N.R. Farnsworth, Computerized data base for medicinal plants, in: World Health Forum, vol. 5(4), World Health Organization, Geneva, 1984, pp. 373–376.
- [8] E.M. Manha, M.C. Silva, M.G.C. Alves, M.G.L. Brandão, M.B. Almeida, PLANT a bibliographic database about medicinal plants, Braz. J. Pharmacogn. 18 (2008) 614–617.
- [9] M.I. Rajoka, I. Sobia, K. Sana, E. Beenish, Medherb: an interactive bioinformatics database and analysis resource for medicinally important herbs, Curr. Bioinform. 9 (2014) 23–27.
- [10] F. Ntie Kang, J.A. Mbah, L.M. Mbaz, et al., CamMedNP: building the Cameroonian 3D structural natural products database for virtual screening, BMC Complement. Altern. Med. 13 (2013) 88.
- [11] F. Ntie-Kang, P.A. Onguene, G.W. Fotso, et al., Virtualizing the p-ANAPL library: a step towards drug discovery from African medicinal plants, PLoS One 9 (2014a) e90655.
- [11a] J. Gaikwad, P.D. Wilson, S. Ranganathan, Ecological niche modeling of customary medicinal plant species used by Australian Aborigines to identify species-rich and culturally valuable areas for conservation, Ecol. Modell. 222 (2011) 3437–3443.
- [12] A.L. Hopkins, Network pharmacology, Nat. Biotechnol. 25 (2007) 1110-1111.
- [13] A.L. Hopkins, Network pharmacology: the next paradigm in drug discovery, Nat. Chem. Biol. 4 (2008) 682–690.
- [14] S. Li, B. Zhang, Traditional chinese medicine network pharmacology: theory, methodology and application, Chin. J. Nat. Med. 11 (2013) 110–120.
- [15] J. Gu, L. Chen, G. Yuan, X. Xu, A drug-target network-based approach to evaluate the efficacy of medicinal plants for type II diabetes mellitus, Evid. Based Complement. Altern. Med. (2013), 203614, 7 pages.
- [16] N.K.K. Ikram, J.D. Durrant, M. Muchtaridi, A.S. Zalaludin, N. Purwitasari, N. Mohamed, et al., A virtual screening approach for identifying plants with Anti H5N1 neuraminidase activity, J. Chem. Inf. Model 55 (2015) 308–316.
- [17] J.L. Medina-Franco, Chemoinformatics characterization of the chemical space and molecular diversity of compound libraries, in: T. Andrea (Ed.), Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology, John Wiley & Sons Inc., 2013, pp. 325–352.
- [18] T.-Y. Tsai, K.-W. Chang, C. Chen, iScreen: world's first cloud-computing web server for virtual screening and de novo drug design based on TCM database @Taiwan, J. Comput. Aided Mol. Des. 25 (2011) 525–531.
- [19] K.-Y. Chen, S.-S. Chang, C.Y.-C. Chen, *In Silico* identification of potent pancreatic triacylglycerol lipase inhibitors from traditional Chinese Medicine, PLoS One 7 (2012) e43932.

- [20] M.A. Koch, A. Schuffenhauer, M. Scheck, S. Wetzel, M. Casaulta, A. Odermatt, P. Ertl, H. Waldmann, Charting biologically relevant chemical space: a structural classification of natural products (SCONP), Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 17272–17277.
- [21] N. Singh, R. Guha, M.A. Giulianotti, C. Pinilla, R.A. Houghten, J.L. Medina-Franco, Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository, J. Chem. Inf. Model. 49 (2009) 1010–1024.
- [22] S. Dandapani, L.A. Marcaurelle, Accessing new chemical space for 'undruggable' targets, Nat. Chem. Biol. 6 (2010) 861–863.
- [23] P.A. Clemons, N.E. Bodycombe, H.A. Carrinski, J.A. Wilson, A.F. Shamji, B.K. Wagner, A.N. Koehler, S.L. Schreiber, Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 18787–18792.
- [23a] C.M. Dobson, Chemical space and biology, Nature 432 (2004) 824-828.
- [24] C. Lipinski, A. Hopkins, Navigating chemical space for biology and medicine, Nature 432 (2004) 855–861.
- [24a] J.L. Medina-Franco, Interrogating Novel Areas of Chemical Space for Drug Discovery using Chemoinformatics, Drug Dev. Res. 73 (2012) 430–438.
- [25] J. Larsson, J. Gottfries, L. Bohlin, A. Backlund, Expanding the ChemGPS chemical space with natural products, J. Nat. Prod. 68 (2005) 985–991.
- [26] J. Larsson, J. Gottfries, S. Muresan, A. Backlund, ChemGPS-NP: tuned for navigation in biologically relevant chemical space, J. Nat. Prod. 70 (2007) 789–794.
- [27] T.I. Oprea, J. Gottfries, Chemography: the art of navigating in chemical space, J. Comb. Chem. 3 (2001) 157–166.
- [28] X. Cao, J. Jiang, S. Zhang, L. Zhu, J. Zou, Y. Diao, W. Xiao, L. Shan, H. Sun, W. Zhang, J. Huang, H. Li, Discovery of natural estrogen receptor modulators with structure-based virtual screening, Bioorg. Med. Chem. Lett. 2013 (23) (2013) 3329–3333.
- [29] Deleted in review.
- [30] L. Guasch, E. Sala, J. Iwaszkiewicz, M. Mulero, M.-J. Salvado, M. Pinent, V. Zoete, A. Grosdidier, G. Pujadas, S. Garcia-Vallve, Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation, PLoS One 7 (2012) e50816.
- [31] S.T. Ngo, M.S. Li, Top-leads from natural products for treatment of Alzheimer's disease: docking and molecular dynamics study, Mol. Simul. 39 (2013) 279–291.
- [32] J. Gu, H. Zhang, L. Chen, S. Xu, G. Yuan, X. Xu, Drug-target network and polypharmacology studies of a Traditional Chinese Medicine for type II diabetes mellitus, Comput. Biol. Chem. 35 (2011) 293–297.
- [33] N.V. Ivanova, M.L. Kuzmina, T.W.A. Braukmann, A.V. Borisenko, E.V. Zakharov, Authentication of herbal supplements using next-generation sequencing, PLoS One 11 (5) (2016).
- [34] V. Sharm, I. Neil Sarkar, Bioinformatics opprtumities for identification of medicinal plants, Brief. Bioinform. 14 (2012) 238–250.
- [35] L.C. da Maia, D.A. Palmieri, V.Q. de Souza, et al., SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation, Int. J. Plant Genom. (2008) 412696.
- [36] K. Mochida, Y. Uehara-Yamaguchi, T. Yoshida, et al., Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops, Plant Cell Physiol. 52 (2011) 785–803.

- [37] M. Kanehisa, S. Goto, M. Furumichi, et al., KEGG for representation and analysis of molecular networks involving diseases and drugs, Nucleic Acids Res. 38 (2010) D355–D360.
- [38] Y. Moriya, D. Shigemizu, M. Hattori, et al., PathPred: an enzyme-catalyzed metabolic pathway prediction server, Nucleic Acids Res. 38 (2010) W138–W143.
- [39] H. Rischer, M. Oresic, T. Seppanen-Laakso, et al., Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in *Catharanthus roseus* cells, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 5614–5619.
- [40] S. Li, B. Zhang, D. Jiang, et al., Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae, BMC Bioinform. 11 (Suppl. 11) (2010) S6.
- [41] X.P. Zhao, X.H. Fan, J. Yu, et al., A method for predicting activity of traditional Chinese medicine based on quantitative composition-activity relationship of neural network model, China J. China Mater. Med. 29 (2004) 1082–1085.
- [42] Y. Wang, X. Wang, Y. Cheng, A computational approach to botanical drug design by modeling quantitative composition-activity relationship, Chem. Biol. Drug Des. 68 (2006) 166–172.
- [43] S.K. Nayak, P.K. Patra, P. Padhi, A. Panda, Optimization of herbal drugs using soft computing approach, Int. J. Log. Comput. 1 (2010) 34–39.
- [44] S. Li, B. Zhang, N. Zhang, Network target for screening synergistic drug combinations with application to traditional Chinese medicine, BMC Syst. Biol. 5 (Suppl. 1) (2011) S10.
- [45] M.M. Larsen, A. Adsersen, A.P. Davis, et al., Using a phylogenetic approach to selection of target plants in drug discovery of acetylcholinesterase inhibiting alkaloids in Amaryllidaceae tribe Galantheae, Biochem. Syst. Ecol. 38 (2005) 1026–1034.
- [46] C.X. Xue, X.Y. Zhang, M.C. Liu, et al., Study of probabilistic neural networks to classify the active compounds in medicinal plants, J. Pharm. Biomed. Anal. 38 (2005) 497–507.
- [47] D.K. Yadav, A. Meena, A. Srivastava, et al., Development of QSAR model for immunomodulatory activity of natural coumarinolignoids, Drug Des. Dev. Ther. 4 (2010) 173–186.
- [48] R.K. Petersen, K.B. Christensen, A.N. Assimopoulou, et al., Pharmacophore-driven identification of PPARgamma agonists from natural sources, J. Comp. Aided Mol. Des. 25 (2011) 107–116.
- [49] H.-J. Zhong, L. Li-J, C.-M. Chong, et al., Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo, PLoS One 9 (2014) e92905.
- [49a] J. Li, H. Wang, J. Li, J. Bao, C. Wu, Discovery of a Potential HER2 Inhibitor from Natural Products for the Treatment of HER2-Positive Breast Cancer, Int. J. Mol. Sci. 17 (2016) 1055.
- [50] C.-H. Leung, D.S.-H. Chan, Y.-W. Li, et al., Hit identification of IKKβ natural product inhibitor, BMC Pharmacol. Toxicol. 14 (2013) 1–8.
- [51] E. Sala, L. Guasch, J. Iwaszkiewicz, M. Mulero, M.-J. Salvado, Pinent M., V. Zoete, A. Grosdidier, S. Garcia-Vallve, O. Michielin, G. Pujadas, Identification of human IKK-2 inhibitors of natural Origin (Part I): modeling of the IKK-2 kinase domain, virtual screening and activity assays, PLoS One 6 (2011) e16903.
- [52] J. Kornhuber, M. Muelbacher, S. Trapp, S. Pechmann, A. Friedl, M. Reichel, C. Muhle, L. Terfloth, T.W. Groemer, G.M. Spitzer, R.L. Klaus, E. Gulbins, P. Tripal, Identification of novel functional inhibitors of acid sphingomyelinase, PLoS One 6 (2011) e23852.

- [53] M. Szelag, A. Czerwonlec, J. Wesoly, H.A.R. Bluyssen, Identification of STAT1 and STAT3 specific inhibitors using comparative virtual screening and docking validation, PLoS One 10 (2) (2015) e0116688.
- [54] V. Aparna, K. Dineshkumar, N. Mohanalakshmi, D. Velmurugan, W. Hopper, Identification of natural compound inhibitors for multidrug efflux pumps of *Escherichia coli* and *Pseudomonas aeruginosa* using in silico high throughput virtual screening and in vitro validation, PLoS One 9 (2014) e101840.
- [55] D. Kudryavtsev, T. Makarieva, N. Utkina, E. Santalova, E. Kryukova, C. Methfessel, V. Tsetlin, V. Stonik, I. Kasheverov, Marine natural products acting on the cetylcholinebinding protein and nicotinic receptors: from computer modeling to binding studies and electrophysiology, Mar. Drugs 12 (2014) 1859–1875.
- [56] J.A. Shilpi, M.T. Ali, S. Saha, S. Hasan, A.I. Gray, V. Seidel, Molecular docking studies on InhA, MabA and PanK enzymes from *Mycobacterium tuberculosis* of ellagic acid derivatives from *Ludwigia adscendens* and *Trewia nudiflora*, In Silico Pharmacol. 3 (2015) 1–7.
- [57] C. Dietrich, J. Hart, D. Raila, U. Ravaioli, N. Sobh, O. Sobh, C. Taylor, InvertNet: a new paradigm for digital access to invertebrate collections, ZooKeys 209 (2012) 165–212.
- [58] J.R. Doroghazi, J.C. Albright, A.W. Goering, K.-S. Ju, R.R. Haines, K.A. Tchalukov, D.P. Labeda, N.L. Kelleher, W.W. Metcalf, A roadmap for natural product discovery based on large-scale genomics and metabolomics, Nat. Chem. Biol. 10 (2014) 963–968.
- [59] S.D. Bentley, et al., Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2), Nature 417 (2002) 141–147.
- [60] R.D. Kersten, et al., A mass spectrometry-guided genome mining approach for natural product peptidogenomics, Nat. Chem. Biol. 7 (2011) 794–802.
- [61] N. Ziemert, et al., The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity, PLoS One 7 (2012) e34064.
- [62] M.H. Medema, et al., AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences, Nucleic Acids Res. 39 (2011) W339–W346.
- [63] K.R. Conway, C.N. Boddy, ClusterMine360: a database of microbial PKS/NRPS biosynthesis, Nucleic Acids Res. 41 (2013) D402–D407.
- [64] G. Yadav, R.S. Gokhale, D. Mohanty, SEARCHPKS: a program for detection and analysis of polyketide synthase domains, Nucleic Acids Res. 31 (2003) 3654–3658.
- [65] N. Ichikawa, et al., DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters, Nucleic Acids Res. 41 (2013) D408–D414.
- [66] S. Caboche, et al., NORINE: a database of nonribosomal peptides, Nucleic Acids Res. 36 (2008) D326–D331.
- [67] J. Kim, G.-S. Yi, PKMiner: a database for exploring type II polyketide synthases, BMC Microbiol. 12 (2012) 169.
- [68] M.A. Skinnider, C.A. Dejong, P.N. Rees, C.W. Johnston, H. Li, A.L. Webster, M.A. Wyatt, N.A. Magarvey, Genomes to natural products prediction informatics for secondary metabolomes (PRISM), Nucleic Acids Res. 43 (2015) 9645–9662.
- [69] P. Carbonell, A. Currin, A.J. Jervis, N.J.W. Rattray, N. Swainston, Y. Cunyu, E. Takano, R. Breitling, Bioinformatics for the synthetic biology of natural products: integrating across the Design-build-test cycle, Nat. Prod. Rep. 16 (2016) 925–932.
- [70] B.V.B. Reddy, A. Milshtein, Z. Charlop-Powers, S.F. Brady, eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from Metagenomes, Chem. Biol. 21 (8) (2014) 1023–1033.

- [71] N.B. Zahra, Z.K. Shinwari, M. Qaiser, DNA barcoding: a tool for standardization of herbal medicinal products (HMPS) of lamiaceae from Pakistan, Pak. J. Bot. 48 (2016) 2167–2174.
- [72] Z.K. Shinwari, K. Jamil, N.B. Zahra, Molecular systematics of selected genera of subfamily Mimosoideaefabaceae, Pak. J. Bot. 46 (2014) 591–598.
- [73] P.M. Hollingsworth, L.L. Forrest, J.L. Spouge, A DNA barcode for land plants, Proc. Natl. Acad. Sci. 106 (2009) 12794–12797.
- [74] S. Chen, H. Yao, J. Han, et al., Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species, PLoS One 5 (2010) e8613.
- [75] T. Gao, H. Yao, J. Song, Y. Zhu, C. Liu, S. Chen, Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family, BMC Evol. Biol. 10 (2010) 324–330.
- [76] H. Yao, J. Song, C. Liu, K. Luo, J. Han, Y. Li, X. Pang, H. Xu, Y. Zhu, P. Xiao, S. Chen, Use of ITS2 region as the universal DNA barcode for plants and animals, PLoS One 5 (2010) e13102.
- [77] Y.M. Fu, W.M. Jiang, C.X. Fu, Identification of species within Tetrastigma (Miq.) Planch. (Vitaceae) based on DNA barcoding techniques, J. Syst. Evol. 49 (2011) 237–245.
- [78] J.P. Han, L.C. Shi, X.C. Chen, Y.L. Lin, Comparison of four DNA barcodes in identifying certain medicinal plants of Lamiaceae, J. Syst. Evol. 50 (2012) 227–234.
- [79] S.G. Newmaster, M. Grguric, D. Shanmughanandhan, S. Ramalingam, S. Ragupathy, DNA barcoding detects contamination and substitution in North American herbal products, BMC Med. 11 (2013) 222.
- [80] C.I. Michel, S.M. Rachel, T. Yanille, M. Jeanmaire, The nuclear internal transcribed spacer (ITS2) as a practical plant DNA barcode for herbal medicines, J. Appl. Res. Med. Aromat. (2016). https://doi.org/10.1016/j.jarmap.2016.02.002.
- [81] H.A. Raja, T.R. Baker, J.G. Little, N.H. Oberlies, DNA barcoding for identification of consumer-relevant mushrooms: a partial solution for product certification? Food Chem. 214 (2017) 383–392.
- [82] I. Parveen, S. Gafner, N. Techen, S.J. Murch, I.A. Khan, DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations, Planta Med. 82 (2016) 1225–1235.
- [83] Q.-Y. Dai, Q. Gao, C.-S. Wu, D. Chesters, C.-D. Zhu, Ai-B. Zhang, Phylogenetic reconstruction and DNA Barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers, PLoS One 7 (2012) e32544.
- [84] A.T. Peterson, D.A. Vieglais, A.G.N. Sigüenza, M. Silva, A global distributed biodiversity information network: building the world museum, Bull. Br. Ornithol. Club 123A (2003) 186–196.
- [85] H. Tae, E.-B. Kong, K. Park, ASMPKS: an analysis system for modular polyketide synthases, BMC Bioinform. 8 (2007) 327.
- [86] R.K. Varshney, A. Graner, M.E. Sorrells, Genic microsatellite markers in plants: features and applications, Trends Biotechnol. 23 (2005) 48–55.

Chapter 22

Good Agricultural Practices: Requirement for the Production of Quality Herbal Medicines

Supradip Saha, Abhishek Mandal, Anirban Dutta ICAR-Indian Agricultural Research Institute, New Delhi, India

1. INTRODUCTION

Unwanted and/or tacit materials, time and again, have been present or been claimed to be present in medicinal or herbal plant medicines around the globe. The substances that have been in the news included microbes such as pathogens, pesticides, mycotoxins, radioactive particles, and heavy metals such as arsenic. The incremental demand and usage of herbal medicines around the world, coupled with the vigorous expansion of the global market demand for the medicinal plants or medicinal plant—derived active ingredients, and quality control (QC) of medicinal plant materials as well as the finished herbal medicinal products have taken center stage as issues of major concern for health agencies, herbal pharmaceutical industries, and the general public, as a whole [1].

National rules for registration and regulation of herbal medicines vary from country to country. Herbal medicines are categorized as prescription medicines or nonprescription medicines, wherever they are regulated. Herbal products as a group along with medicines, may coexist in a certain country. Due to lacunae in regulation, poor QC systems, and faulty distribution channels (which includes Internet-based sales), herbal products categorized other than as medicines and foods are inclined toward increasing potential for drastic consequences. There is a belief that GAP standards are restrictive and obstruct farmers and their agriculture processes. However, the fundamental guiding principle of GAP is the achievement of a safe and sustainable food production system for both growers and consumers. This safe production system is necessary to ensure the right of consumers to hygienic, nutritious, and affordable