Challenges and Advances in Computational Chemistry and Physics 33 Series Editor: Jerzy Leszczynski

Alla P. Toropova Andrey A. Toropov *Editors*

QSPR/QSAR Analysis Using SMILES and Quasi-SMILES

Challenges and Advances in Computational Chemistry and Physics

Volume 33

Series Editor

Jerzy Leszczynski, Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA

This book series provides reviews on the most recent developments in computational chemistry and physics. It covers both the method developments and their applications. Each volume consists of chapters devoted to the one research area. The series highlights the most notable advances in applications of the computational methods. The volumes include nanotechnology, material sciences, molecular biology, structures and bonding in molecular complexes, and atmospheric chemistry. The authors are recruited from among the most prominent researchers in their research areas. As computational chemistry and physics is one of the most rapidly advancing scientific areas such timely overviews are desired by chemists, physicists, molecular biologists and material scientists. The books are intended for graduate students and researchers.

All contributions to edited volumes should undergo standard peer review to ensure high scientific quality, while monographs should be reviewed by at least two experts in the field. Submitted manuscripts will be reviewed and decided by the series editor, Prof. Jerzy Leszczynski. Alla P. Toropova · Andrey A. Toropov Editors

QSPR/QSAR Analysis Using SMILES and Quasi-SMILES

Editors Alla P. Toropova Department of Environmental Health Science Institute of Pharmacological Research Mario Negri IRCCS Milan, Italy

Andrey A. Toropov D Department of Environmental Health Science Institute of Pharmacological Research Mario Negri IRCCS Milan, Italy

ISSN 2542-4491ISSN 2542-4483 (electronic)Challenges and Advances in Computational Chemistry and PhysicsISBN 978-3-031-28400-7ISBN 978-3-031-28401-4https://doi.org/10.1007/978-3-031-28401-4

@ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Who is this book for intended? Primarily for students who are planning their carrier. Ph.D. students can also get valuable ideas for their careers if they are sure that their scientific activity somehow connects with chemistry, biology, medicine, informatics, and mathematical chemistry. The author's team contains specialists in different directions of chemistry, biochemistry, and medicinal chemistry. The geography of the authors is vast enough: USA, Canada, Iran, India, China, Uzbekistan, Czech Republic, Portugal and Italy.

It seems that recognizing the differences in the paths of transition of randomness into regularity or, conversely, the ways of randomness into stable chaos may be of interest to everyone since this task affects any area of human activity. In fact, this book describes attempts to solve the mentioned problem concerning development processes QSPR/QSAR and nano-QSPR/QSAR.

The curious intrigue of the proposed book demonstrates the ability of randomness to provide patterns through variational autoencoders (VAEs) defined over SMILES string and molecular graph, the Monte Carlo technique, and using so-called quasi-SMILES (i.e., traditional SMILES extended via special symbols which are reflecting experimental conditions). However, the philosophic principle "nothing is the only" should make the reader sure that every model should be validated as much as possible, i.e., checked up under a diversity of experimental conditions.

Thus, there is the probability that the book can become curiously and attractive to various "random" readers (professors, engineers, players) who are capable of curios and wonder relevant to the process of building up models for different phenomena.

Milan, Italy

Alla P. Toropova Andrey A. Toropov

Contents

Part I Theoretical Conceptions

1	Fundamentals of Mathematical Modeling of ChemicalsThrough QSPR/QSAR	3
2	Molecular Descriptors in QSPR/QSAR Modeling	25
3	Application of SMILES to Cheminformatics and Generation of Optimum SMILES Descriptors Using CORAL Software Andrey A. Toropov and Alla P. Toropova	57
Par	t II SMILES Based Descriptors	
4	All SMILES Variational Autoencoder for Molecular Property Prediction and Optimization Zaccary Alperstein, Artem Cherkasov, and Jason Tyler Rolfe	85
5	SMILES-Based Bioactivity Descriptors to Model the Anti-dengue Virus Activity: A Case Study Soumya Mitra, Sumit Nandi, Amit Kumar Halder, and M. Natalia D. S. Cordeiro	117
Par	t III SMILES for QSPR/QSAR with Optimal Descriptors	
6	QSPR Models for Prediction of Redox Potentials Using Optimal Descriptors Karel Nesměrák and Andrey A. Toropov	139
7	Building Up QSPR for Polymers Endpoints by UsingSMILES-Based Optimal DescriptorsValentin O. Kudyshkin and Alla P. Toropova	167

Part IV Quasi-SMILES for QSPR/QSAR

8	Quasi-SMILES-Based QSPR/QSAR Modeling Shahin Ahmadi and Neda Azimi	191
9	Quasi-SMILES-Based Mathematical Model for the Prediction of Percolation Threshold for Conductive Polymer Composites Swayam Aryam Behera, Alla P. Toropova, Andrey A. Toropov, and P. Ganga Raju Achary	211
10	On the Possibility to Build up the QSAR Model of Different Kinds of Inhibitory Activity for a Large List of Human Intestinal Transporter Using Quasi-SMILES P. Ganga Raju Achary, P. Kali Krishna, Alla P. Toropova, and Andrey A. Toropov	241
11	Quasi-SMILES as a Tool for Peptide QSAR Modelling Md. Moinul, Samima Khatun, Sk. Abdul Amin, Tarun Jha, and Shovanlal Gayen	269
Par	t V SMILES and Quasi-SMILES for QSPR/QSAR	
12	SMILES and Quasi-SMILES Descriptors in QSAR/QSPRModeling of Diverse Materials Properties in Safetyand Environment ApplicationYong Pan, Xin Zhang, and Juncheng Jiang	297
13	SMILES and Quasi-SMILES in QSAR Modeling for Prediction of Physicochemical and Biochemical Properties Siyun Yang, Supratik Kar, and Jerzy Leszczynski	327
Par	t VI Possible Ways of Nano-QSPR/Nano-QSAR Evolution	
14	The CORAL Software as a Tool to Develop Modelsfor Nanomaterials' EndpointsAlla P. Toropova and Andrey A. Toropov	351
15	Employing Quasi-SMILES Notation in Development of Nano-QSPR Models for Nanofluids Kimia Jafari and Mohammad Hossein Fatemi	373

Contents

Par	t VII Possible Ways of QSPR/QSAR Evolution in the Future	
16	On Complementary Approaches of Assessing the Predictive Potential of QSPR/QSAR Models Andrey A. Toropov, Alla P. Toropova, Danuta Leszczynska, and Jerzy Leszczynski	397
17	CORAL: Predictions of Quality of Rice Based on Retention Index Using a Combination of Correlation Intensity Index and Consensus Modelling Parvin Kumar and Ashwani Kumar	421
Inde	ex	463

Contributors

Sk. Abdul Amin Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India;

Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata, West Bengal, India

P. Ganga Raju Achary Department of Chemistry, Institute of Technical Education and Research (ITER), Siksha 'O'Anusandhan University, Bhubaneswar, Odisha, India

Shahin Ahmadi Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

Zaccary Alperstein Variational AI, Vancouver, BC, Canada

Neda Azimi Advanced Chemical Engineering Research Center, Razi University, Kermanshah, Iran

Swayam Aryam Behera Department of Chemistry, Institute of Technical Education and Research (ITER), Siksha 'O'Anusandhan University, Bhubaneswar, Odisha, India

Artem Cherkasov Vancouver Prostate Centre, UBC, Vancouver, BC, Canada

M. Natalia D. S. Cordeiro LAQV@REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal

Mohammad Hossein Fatemi Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

Shovanlal Gayen Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India

Amit Kumar Halder Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India;

LAQV@REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal

Kimia Jafari Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

Marjan Jebeli Javan Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

Tarun Jha Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India

Juncheng Jiang College of Safety Science and Engineering, Nanjing Tech University, Nanjing, China

Supratik Kar Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, Union, NJ, USA

Sepideh Ketabi Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

Samima Khatun Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India

P. Kali Krishna Department of Bioinformatics, B.J.B Autonomous College, Bhubaneswar, Odisha, India

Valentin O. Kudyshkin Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan

Ashwani Kumar Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India

Parvin Kumar Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India

Danuta Leszczynska Department of Civil and Environmental Engineering, Interdisciplinary Nanotoxicity Center, Jackson State University, Jackson, MS, USA

Jerzy Leszczynski Department of Chemistry, Physics and Atmospheric Sciences, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS, USA

Soumya Mitra Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India

Md. Moinul Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India

Sumit Nandi Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India

Karel Nesměrák Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic

Yong Pan College of Safety Science and Engineering, Nanjing Tech University, Nanjing, China

Ivan Raska Jr. 3rd Medical Department, 1st Faculty of Medicine, Charles University in Prague, Prague 2, Czech Republic

Maria Raskova 3rd Medical Department, 1st Faculty of Medicine, Charles University in Prague, Prague 2, Czech Republic

Jason Tyler Rolfe Variational AI, Vancouver, BC, Canada

Andrey A. Toropov Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy

Alla P. Toropova Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy

Siyun Yang Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, Union, NJ, USA

Xin Zhang College of Safety Science and Engineering, Nanjing Tech University, Nanjing, China

Abbreviations

AAD	Average absolute deviation
ACE	Angiotensin-converting enzymes
AD	Applicability domain
AFM	Atomic force microscopy
ANFIS	Adaptive neuro-fuzzy inference system
ANN	Artificial neural networks
AZI	Augmented Zagreb index
BET	Brunauer, Emmett and Teller
CCC	Concordance correlation coefficient
CII	Correlation intensity index
CORAL	Correlation and logic
Cp	Isobaric heat capacity
CW	Correlation weights
DCW	Descriptor of correlation weights
DHFR	Dihydrofolate reductase
DLS	Dynamic light scattering
DTR	Decision tree regression
EDX	Energy dispersive X-ray spectrometry
EG	Ethylene glycol
EM	Electronic microscopy
EP	Endpoint
ESEM	Environmental scanning electron microscopy
F	Fischer ratio
FF-ANNs	Feed-forward artificial neural networks
FFF	Field flow filtration
FMO	Frontier molecular orbital theory
GBR	Gradient boosting regression
GNPs	Gold nanoparticles
GRNNs	Generalized regression neural networks
GRUs	Gated recurrent units
HOMO	Highest occupied molecular orbital

HSG	Hydrogen-suppressed molecular graphs
ICP-MS	Inductively coupled plasma mass spectrometry
ICPOES	
	Inductively coupled plasma emission spectroscopy
IIC	Index ideality of correlation
ILs	Ionic liquids
LC	Liquid chromatography
LDM	Liquid drop model
logP	Decimal logarithm of octanol-water partition coefficient
LSSVM	Least square support vector machine
LSTM	Long short-term memory
LUMO	Lowest unoccupied molecular orbital
MAE	Mean absolute error
MLP	Multilayer perceptron
MLR	Multiple regression analysis
MO-NPs	Metal oxide nanoparticles
MoRSE	3D-Molecular representation of structures based on electron
	diffraction
MVC	Multivariate characterization
MW	Molecular weight
MWCNTs	Multiwalls carbon nanotubes
NPs	Nanoparticles
OECD	Organization of Economic Co-operation and Development
PCA	Principal component analyses
PLS	Partial least-squares regression analysis
PPs	Principal properties
Q^2	Leave-one-out cross-validated correlation coefficient
QED	Quantitative estimate of drug-likeness
QSAR	Quantitative structure-activity relationship
QSGFEAR	Gibb's free energy of activation relationship
QSPR	Quantitative structure-property relationship
Quasi-SMILES	Quasi-simplified molecular input-line entry-system
R^2	Determination coefficient (or squared correlation coefficient)
RBF	Radial basis function
RF	Random forest
RMSE	Root-mean-square error
RNNs	Recurrent neural networks
SA	SMILES attributes
SADT	Self-accelerating decomposition temperature
SFS	Sequential forward selection
SMILES	Simplified molecular input-line entry-system
SNN	Siamese neural network
SVM	Support vector machine
SVR	Support vector inachine Support vector regression
SWCNTs	Single-wall carbon nanotubes
TC	Thermal conductivity
IC IC	i nemiai conductivity

TEM	Transmission electron microscopy
TF	Target function
TMACC	Topological maximum cross-correlation
VAEs	Variational autoencoders
VIF	Variation inflation factor
WW	Hyper-Wiener index
ΔG ‡	Gibb's activation free energy

Greek Symbols

ρ Density

 φ Volume fraction of nanoparticle (%)

Subscripts

- bf Base fluid
- nf Nanofluid
- p Nanoparticle
- v Volume fraction

Chemical Formulas

Ag	Silver
Al_2O_3	Aluminum oxide
AlN	Aluminum nitride
Au	Gold
Bi ₂ O ₃	Bismuth (III) oxide
CeO_2	Cerium (IV) oxide
Co ₃ O ₄	Cobalt (II,III) oxide
Cr_2O_3	Chromium (III) oxide
Cu	Copper
CuO	Copper oxide
Dy_2O_3	Dysprosium (III) oxide
Fe	Iron
Fe ₂ O ₃	Iron (III) oxide
Fe ₃ O ₄	Iron (II,III) oxide
Gd_2O_3	Gadolinium (III) oxide
HfO ₂	Hafnium (IV) oxide

Chapter 5 SMILES-Based Bioactivity Descriptors to Model the Anti-dengue Virus Activity: A Case Study

Soumya Mitra, Sumit Nandi, Amit Kumar Halder, and M. Natalia D. S. Cordeiro

Abstract The present work aims to demonstrate the significance of the newly suggested bioactivity descriptors (so-called signaturizers) towards developing predictive 2D-OSAR models. As a case study, we examined the development of 2D-QSAR models based on a dataset containing 77 compounds with inhibitory activity reported in a DENV2ProHeLa assay, which is basically a cell-based assay that estimates the Dengivirus-2 (DENV-2) protease inhibitory potential within cellular atmosphere. Indeed, though dengue is a well-known neglected tropical disease, its global incidence has risen sharply in recent years. Moreover, DENV infections may lead to serious and life-threatening diseases such as haemorrhagic fever and dengue shock syndrome. Inhibition of the DENV protease may therefore be a potential target for discovering anti-DENV agents. Interestingly, our initial attempts to set up QSAR models based solely on a number of chemicals descriptors coming from a range of different software packages/programs completely failed, since none of these yielded satisfactory statistical results. Hybrid QSAR models were generated also by combining both chemical and biological descriptors. Noteworthy is that the predictive quality of the 2D-QSAR models significantly improved by resorting instead to solely bioactivity descriptors or those combined with chemical descriptors. The comparison analysis carried out in this work certainly shows that bioactivity descriptors can be useful for setting up predictive models to characterise complex

S. Mitra · S. Nandi · A. K. Halder

Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal 713206, India

A. K. Halder · M. N. D. S. Cordeiro (⊠)

LAQV@REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal e-mail: ncordeir@fc.up.pt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 A. P. Toropova and A. A. Toropov (eds.), *QSPR/QSAR Analysis Using SMILES and Quasi-SMILES*, Challenges and Advances in Computational Chemistry and Physics 33, https://doi.org/10.1007/978-3-031-28401-4_5

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/978-3-031-28401-4_5.