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Abstract: The extensive development in the strains of resistant bacteria is a potential hazard to
public health worldwide. This necessitates the development of newer agents with the antibacterial
property having new mechanisms of action. Mur enzymes catalyze the steps related to the biosynth-
esis of peptidoglycan, which constitutes a major part of the cell wall in bacteria. Peptidoglycan in-
creases the stiffness of the cell wall, helping it to survive in unfavorable conditions. Therefore, the
inhibition of Mur enzymes may lead to novel antibacterial agents that may help in controlling or
overcoming  bacterial  resistance.  Mur  enzymes  are  classified  into  MurA,  MurB,  MurC,  MurD,
MurE, and MurF. Until-date, multiple inhibitors are reported for each class of the Mur enzymes. In
this review, we have summarized the development of Mur enzyme inhibitors as antibacterial agents
in the last few decades.
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1. INTRODUCTION
An antimicrobial agent is a substance that eradicates or

hinders microbial growth, including bacteria, viruses, fungi,
etc. and is, therefore, used to eradicate microbial infections
in humans, animals, and plants. The quick evolution of multi-
drug-resistant strains of a variety of microbes after the use
of antimicrobials in humans and others leading to antimicro-
bial resistance (AMR) is amongst the leading global public
health concerns. Considering the harmful effects of antimi-
crobial resistance on human health [1, 2], there is an immedi-
ate  requirement  for  the  advancement  of  new  therapeutics
with antimicrobial  properties having novel mechanisms of
action, which are directed toward the novel target (s).

In this  review, we are focusing on the development  of
antibacterial agents in the last few decades against enzymes
implicated in the bacterial peptidoglycan biosynthesis path-
way. The synthesis of peptidoglycan may be one of the rich
sources of valid druggable targets for the invention of effec-
tive antibacterial therapeutics [3, 4]. Peptidoglycan, also
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known as murein, is known to be a part of the cell wall in
bacteria [5, 6]. It is ubiquitous among bacteria and located
outside the cytoplasmic membrane of the bacteria [7]. The
various Mur enzymes are the biocatalyst for the synthesis of
peptidoglycan  which  is  required  for  bacterial  survival  be-
cause it contributes to the rigidity of the cell wall and helps
the bacteria to survive in unfavourable environments [8, 9].
Over the past several decades, a lot of research has been fo-
cused  on  the  synthesis  of  bacterial  peptidoglycan  for  the
identification of novel antibacterial therapeutics. Peptidogly-
can biosynthesis involves two main steps, the first of which
is catalyzed by Mur enzymes that occurs in the cytoplasm
[10, 11]. Mur enzymes can be classified into MurA (UDP-
N-acetylglucosamine enolpyruvyl transferase), MurB (UD-
P-N-acetylenolpyruvoylglucosamine reductase), MurC (UD-
P-N-acetylmuramate--L-alanine ligase), MurD (UDP-N-ace-
tyl muramoyl-L-alanine--D-glutamate ligase), MurE (UDP-
N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopime-
late  ligase),  and  MurF  (UDP-N-acetylmuramoyl-tripep-
tide--D-alanyl-D-alanine ligase) [12]. During the recycling
process of peptidoglycan in selected Gram-negative bacte-
ria, there is another enzyme, Mpl, which links tripeptide l-
Ala-γ-d-Glu-meso-A2pm to UDP-MurNAc [13, 14]. As ev-
ery enzyme has its inhibitor, there are different inhibitors for
each class of Mur enzymes [15].
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2.  MUR  ENZYMES:  A  PROMISING  TARGET  FOR
THE  DEVELOPMENT  OF  ANTIBACTERIAL
AGENTS

Enzymes serve as catalysts to accelerate chemical reac-
tions by lowering the activation energy of the chemical reac-
tion. These enzymes belong to six main groups, namely oxi-
doreductases,  transferases,  hydrolases,  lyases,  isomerases,
and ligases [16, 17]. The chemical agents capable of abolish-
ing  or  inhibiting  the  catalytic  role  of  such  enzymes  are
known as enzyme inhibitors which can be reversible or irrev-
ersible  depending  upon  the  mechanism  of  inhibition  [18].
An antimicrobial agent is a substance that plays an impor-
tant function in killing or minimizing the growth of microor-
ganisms. The discovery of penicillin was further proceeded
by  the  development  of  different  classes  of  antibacterial
agents,  such  as  macrolides,  sulphonamides,  streptomycin,
etc. However, the overuse of antimicrobial agents is associat-
ed with a critical problem of multidrug resistance, which im-
plies resistance towards the standard antibacterial therapy.

Additionally, the emergence of widespread multidrug-re-
sistant organisms will limit the therapy option with only a
few  antimicrobial  agents.  In  the  process  of  discovering
antibacterial drugs, researchers also need to focus on the con-
cept of targeting multiple targets for developing promising
antibacterial  drugs.  It  is  also  advisable  to  explore  new
molecules  obtained  from  natural,  marine,  or  microbial
sources  [19-21].

Peptidoglycan biosynthetic processes are significant tar-
gets for antibacterial therapy. Drugs interfering with normal
biosynthesis and peptidoglycan formation serve as powerful
antibacterial agents [22]. Peptidoglycan creates a mesh-like
network and maintains the rigidity and structure of the cell
wall of bacteria. In addition, peptidoglycan protects the bac-
terial cell by preventing its lysis. The bacterial cell wall acts
as  a  hypotonic  medium in  the  absence  of  a  peptidoglycan
layer, eventually leading to cell rupture. Hence, the peptidog-
lycan layer is a vital component of bacteria contributing to
its survival as it gives mechanical strength to withstand high-
er  osmotic  pressure  inside  and  preserves  the  shape  of  the
cell [23, 24].

As peptidoglycans are important for bacterial survival,
their biosynthetic pathway represents a crucial aim for the
advancement of new agents against bacteria with good speci-
ficity because peptidoglycan is present in bacterial cells and
not in mammalian cells [25, 26]. Mur enzymes catalyze the
cytoplasmic steps in the peptidoglycan precursors’ biosynth-
esis. Therefore, Mur enzymes are promising targets for the
advancement of antibacterial agents [27-29].

3. BIOSYNTHESIS OF PEPTIDOGLYCAN
Mur enzymes are mandatory for the formation of bacte-

rial  cell  wall  peptidoglycan.  The  cell  wall  of  bacteria  is
made up of N-acetylmuramyl-peptides (NAM) and N-acetyl-
glucosamine (NAG) [30]. These two units are arranged alter-
nately and linked together by peptide chains, which protect
the bacterial cell wall from being destroyed by osmotic pres-

sure.  Besides,  these  macromolecules  are  essential  to  give
shape to the bacterial cell wall and enable the anchoring of
other components, such as proteins and polysaccharides [31,
32]. Biosynthesis of the peptidoglycan cell wall can be con-
sidered a complex process as it involves different types of
membrane and cytoplasmic and extracellular steps (Fig. 1).

In  the  first  stage,  the  formation  of  monomer  subunits
takes place, i.e., UDP-MurNAc-pentapeptide from UDP-Gl-
cNAc using GlmS synthase, GlmM synthase, and GlmU syn-
thase. Different enzymes play different roles in the synthesis
of peptide moieties, such as MurC, MurD, MurE, and MurF,
which contribute to the addition of different types of compo-
nents,  such  as  D-glutamic  acid,  L-alanine,  meso-di-
aminopimelic acid (A2pm) or L-lysine and D-alanyl-D-ala-
nine to UDP-MurNAc [31, 33, 34]. The formation of pep-
tide subunits commences with the addition of L-alanine to
UDP-MurNAc along with the addition of  D-glutamic acid
and dipeptide D-alanine, following the same with the help of
various  Mur  synthases  (MurC,  MurD,  MurF)  followed  by
the formation of UDP-MurNAc-pentapeptide [35].

The membrane step involves the formation of a lipid in-
termediate, which starts with the transference of phospho--
MurNAc-pentapeptide  from  the  cytoplasmic  step  to  the
membrane site acceptor, so-called undecaprenyl phosphate
(C55-P) [31]. The catalysis of this reaction is done by MraY
(translocase), resulting in the synthesis of undecaprenyl-py-
rophosphoryl-MurNAc-pentapeptide (Lipid I). The reaction
then  continues  with  the  delivery  of  the  GlcNAc  molecule
UDP-GlcNAc to lipid I [36, 37]. This reaction is catalyzed
by  MurG  and  leads  to  the  formation  of  undecaprenyl-py-
rophosphoryl-MurNAc-(pentapeptide)-GlcNAc  (Lipid  II).
Briefly, in the cytoplasmic membrane, bactoprenol, which is
a lipid carrier, is involved in the transport of peptidoglycan
precursors  through  the  cell  membrane.  Bactoprenol  then
pounces on the UDP-MurNAc penta, giving rise to a lipid,
PP-MurNac  penta.  UDP-GlcNAc  is  then  transferred  to
MurNAc, leading to the formation of a disaccharide as well
as a precursor to peptidoglycan, lipid-PP-MurNAc penta-Gl-
cNAc. After the molecule is carried through the membrane,
it  is  added  to  the  growing  glycan  chain,  though  the  exact
mechanism of the entry of the precursor into the membrane
is not clear. The subsequent reaction is called transglycosyla-
tion, where the lipid-PP from the glycan chain is moved by
the hydroxyl group of the GlcNAc attached to the MurNAc
in  the  glycan.  This  displacement  is  caused by the  enzyme
transglycosylase. Peptidoglycan cross-linking is thus formed
by this complex path.  Here it  is  important  to mention that
the transmembrane lipid transporter proteins, also known as
flippase, which are situated in the membrane and belong to
ABC transporter or P4-type ATPase families, primarily con-
tribute to the motion of phospholipid molecules between the
two leaflets that make the cell membrane (transverse diffu-
sion, also called “flip-flop” transition). A vital step in this
pathway is the export of Lipid II, the lipid-linked cell wall
monomer,  by  its  transporter  MurJ.  The  mechanism  of  the
transbilayer movement of Lipid II moderated by MurJ is still
unclear. It is assumed that attaching the Lipid II to those resi-
dues during the transport causes a conformational change in
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Fig. (1). Peptidoglycan biosynthesis of the cell wall of bacteria. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).

MurJ, which is needed to progress through the Lipid II trans-
port cycle. UDP-N-acetyl muramic acid (UDP-MurNAc) is
formed  from  UDP-N-acetylglucosamine  (UDP-GlcNAc).
This process is catalyzed by both MurA and MurB enzymes.

4. INTERRELATION OF FUNCTIONAL AND STRUC-
TURAL  ENVIRONMENT  BETWEEN  DIFFERENT
MUR  LIGASES

A  group  of  Mur  ligase  enzymes  composed  of  MurA,
MurB, MurC, MurD, MurE, and MurF is known as Mur lig-
ases. Mur ligases serve as the targets for antibacterial drugs
as they are considered the family of enzymes that ligate the
cell  wall  of  bacteria.  During  the  building  of  bacterial  cell

walls from peptidoglycan, these Mur ligases exhibit an im-
portant function in the addition of a short polypeptide to UD-
P-D-acetylmuramic acid. For example, MurC causes the ad-
dition  of  L-alanine,  MurD causes  the  addition  of  D-gluta-
mate, MurE adds meso-diaminopimelate or L-lysine, while
MurF adds D-alanyl-D-alanine to peptidoglycans. All these
Mur ligases are similar to each other concerning their topolo-
gy. MurC and MurF enzymes have a three-domain structure
which includes the N-terminal domain, central domain, and
C-terminal domain, all of which contribute to the attachment
of  UDP-MurNAc,  ATPase,  as  well  as  GTPase  that  con-
tributes  to  the  attachment  to  the  incoming  amino  acid
[38-41].
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Fig. (2). The mechanism involved in the formation of the peptide bonds by the catalytic action of Mur ligases.

The ATP binding sites of the four different Mur ligases,
MurC,  MurD,  MurE,  and  MurF,  are  10-20%  identical  in
terms of the primary sequence, and the enzymes have a very
similar ATP binding site with common ATP-binding consen-
sus sequence GXXGKT/S [42]. Furthermore, the structures
of these Mur ligases possess four homologous regions, in-
cluding  nucleotide  fold,  hydrophobic  region  (Glu  and  His
amino acids  located in  between the  two acidic  residues  in
the middle of the proteins), a dyad composed of a set of con-
centrated acidic residues, and the fourth region includes a hy-
drophobic patch. These regions seem critical for the Mur lig-
ase  activity  [43,  44].  The  ligation  of  amino  acids  is  cata-
lyzed by Mur ligases, resulting in the formation of a phos-
phate  bond  to  form  a  peptide  chain  from  UDP-MurNAc
[42]. The process starts with ATP binding, followed by the
nucleotide substrate and then dipeptide. ATP consists of sev-
eral charged groups where an SN2 reaction is involved. Dur-
ing the reaction, the phosphate group is displaced with the
amino  group.  Fig.  (2)  depicts  the  catalytic  mechanism  of
Mur ligases.

5.  INSIGHT  INTO  THE  THREE-DIMENSIONAL
STRUCTURES OF MUR ENZYMES

Through the analysis of multiple X-ray crystal structures
of Mur enzymes, it has been shown that these ligases pos-
sess three similar domains, including the N-terminal domain
(NTD), central domain (CD), and C-terminal domain (CTD)
[12]. The first domain is bound to the nucleotide substrate.
In E. coli Mur ligases, the α helices are present in varying
numbers, such as three α-helices in MurF, four α-helices in
MurC and MurD while,  two α-helices  and five  parallel  β-
sheets  in  MurE.  The  nucleotide  substrate  also  possesses
UDP  moiety,  which  is  bound  with  MurC  and  MurD  en-
zymes in opposite orientations for the accommodation of a
longer  substrate.  However,  for  interaction  with  MurE  and
MurF, the pyrophosphate moiety of UDP is extended out to-
wards  the  N-terminal  domain.  MurE  and  MurF  enzymes
bind to UDP in such a way that the loop extending from the
third domain surrounds the uridine group and is connected
with four hydrogen atoms in the diphosphate moiety [45].
They show basic N-terminal alpha and beta fold after recog-
nizing the  lengthening nucleotide  of  four  helices  in  MurC
and  MurD  while  two  helices  and  five  parallel  β-sheets  in
MurE. Additionally, MurE consists of a specific N-terminal
binding  pocket  in  which  the  enzyme  has  a  preference  to-
wards  γ  rather  than  α  carboxyl  group  of  the  UDP-Mur-

NAc-peptide  for  peptide  bond  formation  [46].
For the central domain, MurC consists of seven parallel

β-sheets, whereas there are six parallel β-sheets in the case
of MurD, MurE, and MurF. Besides, there are varying num-
bers of alpha-helices surrounding the beta-sheets, which are
seven  for  MurD  and  MurE,  four  for  MurC  and  eight  for
MurF. This second domain also plays a role in the binding
of ATP because it consists of the binding fold of mononu-
cleotide. Besides, the two important residues, glutamic acid
and  histidine,  are  also  present  for  controlling  magnesium
ions. The stabilization of the second magnesium binding site
in MurD, MurE, and MurF is then achieved by the carbamy-
lated  lysine  residue  and  glutamic  acid  residue  present  in
MurC [38].

For the third domain, there is also the presence of both
α-helices and β-sheets in which five α-helices surround the
five parallel and one antiparallel β-sheets. Rossmann dinu-
cleotide binding fold is also present in this domain for ami-
no acid substrate binding. For example, in MurC, the pres-
ence of histidine residue plays a key role in creating a hydro-
phobic pocket which results in complementary binding with
the  short  side  chain  of  L-Ala.  In  addition,  the  purpose  of
Mur ligase having the C-terminal is to cover the ATP bind-
ing site as well as to help in the orientation of the amino acid
by inserting a loop into the active site. The interaction be-
tween amino acid and the phosphate group of ATP causes
the formation of a complete form of the arginine residue. Fol-
lowing this, the nucleophilic attack is observed when there
is a binding of ADP, which results in the shifting of position
in the arginine residue [45, 46, 38].

6.  MURA  (UDP-N-ACETYLGLUCOSAMINE  ENOL-
PYRUVYL TRANSFERASE)

MurA enzyme is responsible for the catalytic activity in
the first step. In this step, enolpyruvate is transferred from
phosphoenolpyruvate to the third position of UDP-GlcNAc,
leading to the formation of a UDP-GlcNAc enolpyruvate [8,
47, 48]. This enzyme functions as transferase, which acts on
the second carbon of phosphoenolpyruvate (PEP) to break
the CO bond. MurA is composed of 418 amino acid residues
and has two globular domains linked by a double-stranded
linker [49, 50]. Each domain is composed of six helices and
three  four-stranded β-sheets  [51].  The  catalytic  site  of  the
MurA enzyme is located in a deep pocket between the two
globular domains [52].
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Fig. (3). (A) Chemical structures of fosfomycin, cyclic disulfide RWJ-3981, pyrazolopyrimidines RWJ-110192, purine RWJ-140998 deriva-
tive, and 3-benzyloxyphenylquinazolinone, (B) Depiction of the protein-ligand interaction of Fosfomycin with MurA (PDB-ID: 1UAE). Pro-
tein is represented in cartoons, ligands/cofactors are represented in sticks, and amino acids are represented in lines. (A higher resolution /
colour version of this figure is available in the electronic copy of the article).

This first stage is vital for the subsequent steps of pepti-
doglycan biosynthesis. Therefore, MurA enzyme inhibitors
can act as excellent antibacterial agents [53, 54]. Examples
of MurA enzyme inhibitors include fosfomycin, cyclic disul-
fide  RWJ-3981,  the  purine  analog  RWJ-140998,  and  the
pyrazolopyrimidine RWJ-110192. By screening a chemical
library,  compounds  RWJ-3981,  RWJ-110192,  and
RWJ-140998 were identified as inhibitors of the E. coli Mu-
rA enzyme by the researchers. RWJ-140998 is a purine and
contains the 2, 4-dioxopyrimidine ring, which is also found
in the uracil portion of the UNAG substrate. For RWJ-3981,
the centroid of  the sulfur-containing ring was predicted to
bind 7.1 Å from the sulfur of the catalytic Cys115. The car-
bonyl  oxygen  of  the  inhibitor  may  form  strong  hydrogen
bonds with Arg120 and Arg397. The sulfur atoms can make
hydrophobic  contacts  with  the  side  chain  carbon atoms of
Met90  and  Arg91.  For  RWJ-110192,  the  centroid  of  the
rings  was  predicted  to  bind  farther  from  Cys115  than  for
RWJ-3981. Fig. (3) depicts the chemical structures of select-
ed MurA inhibitors and the protein-ligand interaction of Fos-
fomycin with MurA (PDB-ID: 1UAE).

Fosfomycin is a product of natural origin with a broad
spectrum of antibacterial activity. Despite its name (ending
in -omycin), Fosfomycin is not a macrolide but a member of
a novel class of phosphonic antibiotics. Fosfomycin (origi-

nally known as phosphonomycin) was discovered in a joint
effort of Merck and Co. and Spain's Company Espanola de
Penicilina  y  Antibiotic  (CEPA).  It  was  first  isolated  by
screening  broth  cultures  of  Streptomyces  fradiae  isolated
from soil samples for the ability to cause the formation of
spheroplasts  by  growing  bacteria.  The  discovery  was  de-
scribed in a series of papers published in 1969. CEPA began
producing fosfomycin on an industrial  scale in 1971 at  its
Aranjuez facility. This enzyme catalyzes the committed step
in peptidoglycan biosynthesis, namely the ligation of phos-
phoenolpyruvate  (PEP)  to  the  3'-hydroxyl  group  of  UD-
P-N-acetylglucosamine. This pyruvate moiety provides the
linker that bridges the glycan and peptide portion of peptido-
glycan. Fosfomycin is a PEP analog that inhibits MurA by
alkylating  an  active  site  cysteine  residue  (Cys  115  in  the
Escherichia coli  enzyme).  Fosfomycin enters the bacterial
cell through the glycerophosphate transporter [55, 56].

Fosfomycin  is  used  clinically  as  an  antibacterial  agent
successfully [57] and is also useful in treating urinary tract
infections caused by bacteria in women and is also used to
treat infections outside the urinary tract [58]. It enters active-
ly into the bacteria via the L-α-glycerophosphate and the glu-
cose-6-phosphate uptake systems [59] and acts as an equiva-
lent of phosphoenol pyruvate, which binds covalently to the
active site having cysteine residue. The impairment in fos-
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fomycin uptake or overproduction of the low-affinity trans-
ferase enzyme leads to resistance in the chromosomally en-
coded fosfomycin-resistant bacterial strains [60-62]. In some
bacteria,  namely Serratia  marcescens,  Klebsiella  pneumo-
niae,  Enterobacter cloacae,  and Staphylococcus epidermi-
dis, the resistance is due to the enzymatic transformation of
the  fosfomycin  [63-66].  The  Mycobacterium  tuberculosis
(Mtb) is resistant to fosfomycin because of the existence of
an aspartate residue in place of the cysteine residue at the ac-
tive site of the MurA enzyme [67]. Cyclic disulphide, pyra-
zolopyrimidine,  and  purine  analogues  (Fig.  3)  are  another
three  classical  inhibitors  of  Escherichia  coli  MurA  [68].
Their chemical properties and mechanisms of action are dif-
ferent from that of fosfomycin. Cyclic disulphide and purine
derivatives are irreversible inhibitors, while pyrazolopyrimi-
dine derivatives are reversible inhibitors. These compounds
are reported to inhibit Staphylococcus aureus, Enterococcus
faecalis, and Enterococcus faecium [69, 70]. The synthesis
and  evaluation  of  a  series  of  quinazolinone-based  com-
pounds  against  E.  coli  MurA  revealed  3-benzy-
loxyphenylquinazolinone with promising inhibitory activity
against MurA (IC50 = 8 µM). Derivatives of diarylmethane,
a substituted imidazole,  and sesquiterpene lactones are re-
ported  to  inhibit  MurA  with  IC50  values  ranging  between
0.2-0.9 µM. It is worth mentioning that the half maximal in-
hibitory concentration (IC50) is a measure of the potency of a
substance in inhibiting a specific biological or biochemical
function.  IC50  is  a  quantitative measure that  indicates  how
much of a particular inhibitory substance (e.g., drug) is need-
ed to inhibit in vitro a given biological process or biological
component by 50% [1]. The biological component could be
an enzyme, cell, cell receptor, or microorganism. IC50 values
are typically expressed as molar concentration.

According to the phylogenetic analysis, there are two dif-
ferent categories of MurA transferases. The first category of
transferases exists throughout all bacteria except gram-nega-
tive Mycoplasma species. The second category occurs as a
copy of a duplicate gene only in the low gram-positive bacte-
ria. Both the categories are structurally and functionally very
much alike, and one enzyme can act as an alternate for the
other [71]. The purine analogues, namely acyclic disulphide
and pyrazolopyrimidine derivatives, are the novel inhibitors
of the E. coli MurA enzymes. In acyclic disulphide, the ami-
no acid cysteine contains a thiol group and readily forms di-
sulfides,  linking  two  cysteine  units  together.  This  simple
linkage has important consequences for protein shape as this
covalent  interaction  restricts  the  conformations.  Classical
theory suggests that disulfide bonds stabilize proteins by re-
ducing the entropy of the denatured state. More recent theo-
ries have attempted to expand this idea, suggesting that in ad-
dition to configurational entropic effects, enthalpic and na-
tive-state  effects  occur  and  cannot  be  neglected.  Whereas
the heterocyclic fusion of pyrimidine and pyrazole ring re-
sulted in the formation of pyrazolopyrimidines. The amino
group on pyrazolopyrimidine allowed modifications of the
molecules  through  binding  to  sugars  or  amino  acids.  The
IC50 of those compounds was found to be lesser compared to
fosfomycin when preincubated with MurA. There was a re-

duction  in  the  IC50  value  at  least  five  times,  owing  to  the
presence  of  UDP-N-acetylglucosamine  during  preincuba-
tion, indicating that these compounds might interact with the
enzyme  in  a  particular  manner  that  is  increased  by  UD-
P-N-acetylglucosamine such as fosfomycin. There was prob-
ably no similarity in the structure of the three compounds to
fosfomycin.  The  compounds  showed  antibacterial  activity
but  not  specifically  by  MurA  inhibition,  as  inhibition  of
DNA, RNA, and protein synthesis was also seen. In compari-
son to fosfomycin, the minimum inhibitory concentrations
(MICs) of these compounds were similar to those of the test
strains [61]. The compounds were proposed to attach firmly
with MurA but not covalently. They appeared to attach non--
covalently to the MurA enzyme at or near the site of binding
of fosfomycin.

7.  MURB  (UDP-N-ACETYLENOLPYRUVOYLGLU-
COSAMINE REDUCTASE)

MurB enzyme is responsible for the catalytic activity in
the second step of the synthesis of peptidoglycan. This step
comprises the conversion of UDP-N-acetylglucosamine (UD-
P-GlcNAc)  into  UDP-N-acetyl  muramic  acid  (UDP-Mur-
NAc).  The enolpyruvate  moiety is  reduced to  D-lactate  in
the  second  stage  to  produce  UDP-N-acetyl  muramic  acid
(UDP-MurNAc). MurB enzyme catalyzes this process as a
reductase [72, 73].

The  MurB  reductase  plays  a  catalytic  role  in  the  two
steps  of  the  reaction.  Firstly,  flavin  adenine  dinucleotide
(FAD) is reduced by two electrons from NADPH to form a
firmly bound flavin, followed by the movement of the identi-
cal electron at the third carbon of the enol ether, which even-
tually leads to the reduction of the vinyl bond on the second
carbon by a quenching process. The active site, Ser-229, is
important for the carbanion or enol intermediate quenching
as it is of proton origin [74]. The X-ray crystal structures of
the E. coli MurB in a substrate (UDP-N-acetylglucosamine
enolpyruvate)-free (PDB-ID: 1MBT), substrate-bound forms
(PDB-IDs:  2MBR,  1MBB,  1UXY),  and  inhibitor-bound
form (PDB-ID: 2Q85) are deposited in the protein data bank
[75-79]. MurB has three domains where domain 1 is com-
prised of 3-67 residues and composed of six β-strands and α-
helix.  Domain  2  is  comprised  of  68-201  residues  and  has
nine  β-strands  and  two  α-helices,  while  domain  3  has
219-326 residues and is composed of six β-strands and three
α-helices [77, 80]. Fig. (4) gives a schematic view of the sub-
strate-bound E. coli MurB crystal structure and depicts the
chemical structure of the MurB inhibitor.

Given that MurB enzymes are necessary for the bacteria
to stay alive, this enzyme is a suitable target for antibacterial
drugs for the treatment of infections since the homologue in
eukaryotic cells is absent. MurB inhibitors are targeted to be
antibacterial agents. They are effective in inhibiting S. au-
reus, S. pneumoniae, and E. coli [81]. Examples of MurB en-
zyme  inhibitors  include  4-thiazolidinone  analogues  and
naphthyl  tetronic  acid.  Fig.  (4)  depicts  the  MurB fold and
binding mode of naphthyl tetronic acid as a MurB inhibitor
(PDB-ID: 2Q85).
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Fig. (4). A schematic view of the substrate-bound E. coli MurB crystal structure and depiction of the binding mode of naphthyl tetronic acid
as MurB inhibitor (PDB-ID: 2Q85). Protein is represented in cartoons, ligands/cofactors are represented in sticks, and amino acids are repre-
sented in lines. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

A  novel  class  of  2,3,5-Trisubstituted-4-thiazolidinone
derivatives  is  reported  as  MurB  enzyme  inhibitors  [82].
Structure-activity relationship studies from the general struc-
ture  of  4-thiazolidinone  show  that  R1  (e.g.,  n-butyl),  R2
(e.g.,  t-butyl-m-phenoxy  benzaldehyde),  and  R3  (e.g.,  hy-
drazide) side chains at 2nd, 3rd and 5th positions, respectively,
are essential for inhibitory activity. The inhibitory activity is
high when the R1 at the 2nd  position has an n-butyl group,
and the R2 at the 3rd position has aromatic rings, especially
t-butyl-m-phenoxy  benzaldehyde.  t-butyl-m-phenoxy  ben-
zaldehyde is a bulky group that can fill the big hydrophobic
pockets in the MurB enzyme. Besides, the inhibitory action
of MurB enzyme inhibitors disappears when the R2 position
is substituted with a simple phenyl group. The R3 side chain
at the 3rd position does not affect MurB enzyme inhibition.
This is evident from the fact that the substitution of the R3
position with methyl or hydrazide moiety results in an effect
that is not significant [83]. Further, naphthyl tetronic acid is
another class of MurB inhibitor; an X-ray crystallographic
structure  of  it  complexed  with  MurB  enzyme  (PDB-ID:
2Q85) is  deposited in  the protein data  bank.  Although the
complete detail of this molecule is yet to be published, based
on X-ray crystallographic data of MurB and using the UDP--
sugar substrate as a guide, surrogates of the diphosphate moi-
ety were developed. The main objective of the template was
to imitate the main interactions of the diphosphate with the
enzyme and to align the resultant side chains in such a mann-
er that they would occupy space similar to the glucosamine
and uridine moieties of the substrate. In the above study, the
microbiological activity for the 4-thiazolidinone compounds
was not specified apparently due to a deficiency of such ac-
tivity.  The  four  Mur  ligases,  MurC,  MurD,  MurE,  and
MurF, catalyze the addition of a short polypeptide to UD-
P-N-acetylmuramic  acid.  Frankia  strains  of  cluster-2  and
cluster-3 contain two copies  of  murC,  while  the strains  of
cluster-1 and cluster-4 contain only one. Phylogenetically,
the protein encoded by the murC gene shared only by clus-
ter-2 and cluster-3, termed MurC1, groups with MurC pro-
teins  of  other  Actinobacteria.  The  protein  encoded  by  the
murC  gene  found  in  all  Frankia  strains,  MurC2,  shows  a
higher similarity to the MurC proteins of plants than of Acti-

nobacteria. MurC2 could have been either acquired via hori-
zontal gene transfer or gene duplication and convergent evo-
lution, while murC1 was subsequently lost in the cluster-1
and cluster-4 strains. In the nodules induced by the cluster-2
strains,  the  expression  levels  of  murC2  were  significantly
higher than those of murC1. Thus, there is clear sequence di-
vergence between both types of Frankia MurC, and Frankia
murC1 is in the process of being replaced by murC2, indicat-
ing selection in favor of murC2. Nevertheless, protein mod-
elling showed no major  structural  differences between the
MurCs from any phylogenetic group examined [84].

8.  MURC  (UDP-N-ACETYLMURAMATE--L-ALA-
NINE LIGASE)

MurC  enzyme  is  highly  essential  for  peptidoglycan
biosynthesis. They are mainly responsible for the addition of
the  L-alanine  (Ala)  residue  onto  the  nucleotide  precursor
UDP-MurNAc. The major role of the MurC enzyme is to cat-
alyze ATP-dependent ligation of Ala and UDP-N-acetylmu-
ramic acid (UNAM),  thus  forming UNAM-Ala as  the  end
product. To form this end product, the MurC enzyme acts as
a non-ribosomal peptide ligase and forms an amide bond be-
tween Ala and UNAM with the help of ATP [85, 86]. The
crystal structure of E. coli MurC is determined at 2.6 Å reso-
lution in the apo-form (PDB-ID: 2F00) [87, 88]. Similar to
other  Mur  enzymes,  this  enzyme  has  a  modular  multi-do-
main structure (Fig 5).  Since the MurC enzyme is  vital  in
the  formation  of  pentapeptide,  the  inhibition  of  the  same
will alter the formation of the peptidoglycan wall of bacte-
ria.  There  are  different  types  of  inhibitors  for  MurC  en-
zymes which include pyrazolopyrimidine derivatives, phos-
phonate derivatives, and benzylidene rhodamine derivatives.
Fig. (5) shows the chemical structures of MurC inhibitors.
Studies about structure-activity relationships have revealed
that  the  tert-butyl  and  methyl-substituted  pyrazole  moiety
should  be  retained  in  pyrazolopyrimidine  derivatives  [89,
90].  However,  different  side  chains  are  inserted  into  the
pyrimidine ring, which causes the minimum inhibitory con-
centration to be varied. It was seen that the activity is opti-
mized with the side chain attachment, as shown in Fig. (5).
Concerning phosphonate derivatives, it was found that the
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Fig. (5). Chemical structures of various classes of MurC inhibitors.

acyl phosphate moiety is responsible for the inhibitory ac-
tion  of  the  MurC  enzyme.  Phosphonate  compound  A,  as
shown in Fig. (5),  can inhibit  the MurC enzyme as it  may
bind tightly with it. The same applies to phosphonate com-
pound B.

Furthermore, the phosphonate compound A is deficient
in the methyl group in the lactic acid moiety;  however,  in
phosphonate compound B, the hexose moiety is attached to
the 1,3-propanediol group. The reason they are specifically
potent against MurC is due to the formation of ether linkage
in  the  alpha-position  of  the  phosphonate  group  in  com-
pounds A and B, which makes them bind tightly. It can be
concluded that compound A has the highest inhibitory activi-
ty as compared with others. This may be due to the presence
of  des-methyl  muramic acid moiety attached to  a  1,3-pro-
panediol group of compound A [91]. The compound exhibit-
ed mixed-type inhibition about all three enzyme substrates
indicating that  it  forms dead-end complexes with multiple
enzyme states. Isothermal titration calorimetry (ITC) was ap-
plied to validate these findings. Analogues of Ala were test-
ed as inhibitors of the E. coli  MurC and were found to be
competitive against Ala. Inhibition by other Ala analogues
was also shown with the E. coli enzyme but without specifi-
cation of the type of inhibition.

In benzylidene rhodamine derivatives, the inhibitory ac-
tivity  of  different  compounds  was  evaluated  against  the
MurC enzyme. It was found that only a few compounds had
inhibitory potency. Compounds with X as O or S, as depict-
ed in Fig. (5), showed similar activity as benzylidene rho-
damine, which is essential for inhibitory action.

9.  MURD  (UDP-N-ACETYLMURAMOYL-L-ALA-
NINE--D-GLUTAMATE LIGASE)

MurD  ligase  has  a  similar  role  as  the  MurC  enzyme.
MurD is majorly involved in the addition of D-glutamic acid
to UDP-MurNAc-L-Ala in the presence of ATP with the for-
mation of acyl-phosphate and tetrahedral intermediates [92].
MurD enzyme allows the addition of second amino acid (D-
glutamic acid) on the peptide stem [88, 93]. There is a large
number  of  X-ray  crystal  structures  of  apo-  and  subs-
trate-bound MurD deposited in the protein data bank. Fig.
(6)  depicts  cartoon  views  of  selected  MurD  crystal  struc-
tures. The X-ray crystal structure of E. coli MurD in the pres-
ence of its UDP-sugar substrate revealed it to be composed
of three globular domains (Fig. 6) [94]. Domain 1 is respon-
sible for the linking of the UDP moiety of the UDP sugar
substrate. This domain includes 1-93 residues and contains a
five  parallel  β-sheet  encircled  by  four  α-helices  [95].  Do-
main 2 includes 94-298 residues and contains a central six
parallel β-sheet enclosed by seven α-helices, while domain 3
includes 299-437 residues and consists of a six β-sheet (five
parallel  and one antiparallel  strand enclosed by five  α-he-
lices [96, 41]. Furthermore, the MurD enzyme contains the
N-terminal, which is accountable for the binding of UDP--
MurNAc-1-Ala, the central part in charge of the ATP bind-
ing, and the C-terminal area accountable for the D-glutamic
acid binding.

The E. coli MurD is normally present in the cytoplasm,
which causes the failure of most of the MurD inhibitors to
function as they show poor penetration across the cytoplas-
mic membrane of bacteria. There are several types of MurD
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Fig. (6). A schematic depiction of cartoon view of (A) E. coli MurC (PDB-ID: 1F00), (B) E. coli MurD (PDB-ID: 2Y68), (C) E. coli MurE
(PDB-ID: 7B61), and (D) E. coli MurF (PDB-ID: 1GG4) enzymes. Protein is represented in cartoon, ligands/cofactors are represented in
sticks, and amino acids are represented in lines. (A higher resolution / colour version of this figure is available in the electronic copy of the
article).

Fig. (7). Chemical structures of various classes of MurD inhibitors.
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inhibitors reported in the literature [97]. Fig. (7) depicts the
chemical structures of a few MurD inhibitors. Firstly, phos-
phonate derivatives possess MurD inhibitory effects. Differ-
ent substitutions on phosphonate derivatives can produce dif-
ferent  inhibitory  effects.  The  first  one  includes  carbamate
and amide substituted phosphonate derivatives with high po-
tency to inhibit MurD. This is because it can be substituted
with  trans-cinnamoyl,  3-hydroxy  substituted  trans-cinna-
moyl, and 3,4- methylenedioxyphenyl ring in the structure.
The  compounds  substituted  with  methylene  and  D-alanyl
groups are less potent than the above compounds.

Furthermore,  compounds that  contain the nitrobenzene
sulfonyl group are also potent inhibitors. On the other hand,
sulphonamide-substituted  phosphonate  derivatives  are  the
other domain substitution that contributes to forming MurD
inhibitors.  Compounds  that  consist  of  o-nitrobenzene  sul-
fonyl  and  m-nitrobenzene  sulfonyl  substituents  have  the
higher  inhibitory  potency  in  this  series.  However,  this
sulphonamide substitution is  less  effective than carbamate
and amide substitution [98].

Besides these, the second type of derivatives includes 2-
oxoindolinylidene  and  2-thiooxothiazolidine-4-one  deriva-
tives. Compounds with pyridine ring structure can bind with
the  central  domain  spaces,  while  the  presence  of  2-oxoin-
dolinylidene enables attachment to uracil binding sites with
the greatest area. This allows these inhibitors to have higher
chances of interaction with protein molecules, as depicted us-
ing  the  X-ray  crystal  structure  of  MurD  bound  with  2-
thiooxothiazolidine-4-one  derivative  in  Fig.  (6)  (PDB-ID:
2Y68) [99].

The third type of derivatives includes naphthalene-N-sul-
fonyl-D-glutamic acid derivatives. Agents with 2-naphtha-
lene substituted N-sulfonyl-D-glutamic acid and aryl alky-
loxy moiety that is substituted at position-6 and position-7
can increase the inhibitory activities. Substitution of 6-(aryl)
allyloxy naphthalene side chains gives lipophilic properties
to the derivatives, while naphthalene rings provide hydropho-
bic interactions [100]. Other derivatives include macrocyclic
inhibitors, which act as novel compounds that inhibit the for-
mation of peptidoglycan through MurD inhibition [101]. Po-
lycyclic derivatives are also one of the potent inhibitory com-
pounds for the MurD enzyme. Studies have shown that 9H-x-
anthine substituted polycyclic compounds will have greater
inhibitory effects  than other  substituted polycyclic  deriva-
tives. This type of substitution produces the most potent in-
hibitory  action  in  E.  coli  [102].  The  most  potentially  de-
signed MurD inhibitor possesses phosphinic acid having a te-
trahedral geometry at the dipeptide center, which could be
enzymatically phosphorylated, leading to a close counterpart
of  the  normal  reaction  intermediate.  It  also  withholds  the
charged UDP moiety probably vital  for binding. Based on
the belief that the structure of N-acetylmuramic acid could
be vital for the potency of the amide-forming enzyme inhibi-
tors,  another  research  group carried  out  the  synthesis  of  a
new  generation  of  inhibitors  involving  this  characteristic.
The  potency  was  enhanced  by  more  than  three  orders  of
magnitude as compared to Tanner’s inhibitor due to the in-

clusion of muramic acid and the control of the stereochemi-
cal configuration of the L-amino phosphinate. This was evi-
dent from an IC50 value of <1 nM in comparison to an IC50

value of 680 nM for Tanner’s inhibitor. Recently, a series of
N-(5-phthalimidopentanoyl)-,  N-[2-(2-ethoxy)acetyl]-  and
N-(7-oxooctanoyl)-phosphono- and phosphinoalanine deriva-
tives  were  synthesized  and  investigated  for  inhibition  of
MurD. Concerning substrate analogues, the effect of differ-
ent analogues of D-glutamic acid on the E. coli enzyme was
evaluated, among which some showed weak inhibition. Ad-
ditionally, N-acetylmuramic acid derivatives were also synth-
esized and evaluated as promising inhibitors of MurD; how-
ever, no such potential inhibitors were found [103].

10.  MURE  (UDP-N-ACETYLMURAMOYL-L-ALA-
NYL-D-GLUTAMATE--2,6-DIAMINOPIMELATE  LI-
GASE)

UDP-MurNAc-tripeptide ligase (MurE) is one of the en-
zymes  from  the  class  of  ATP-  dependent  ligase  family.
MurE is considered the only Mur ligase which demonstrates
substrate specificity for various bacterial species. Generally,
gram-positive  bacteria  contain  an  L-lysine  residue,  and
gram-negative  bacteria  possess  meso-diaminopimelic  acid
(meso-A2pm) group at the third position of the peptidogly-
can  peptide  moiety.  It  is  worth  mentioning  that  most  rod-
shaped gram-positive bacteria also contain diaminopimelic
acid (DAP) residue at this position, including bacilli and my-
cobacteria. Peptidoglycan is the principal component of the
cell  wall  of  bacteria  which  chemically  consists  of  dis-
accharide and pentapeptide-stem. The disaccharide, made up
of N-acetyl-glucosamine and N-acetyl-muramic acid, is pre-
served  in  all  eubacteria.  However,  the  pentapeptide-stem
and bridge structure change from species to species. During
synthesis, MurE is responsible for controlling the addition of
lysine or diaminopimelate moiety into the stem peptides of
peptidoglycan structure in a specific manner [104]. There is
a large number of X-ray crystal structures of apo- and subs-
trate-bound MurD deposited in the protein data bank.  The
X-ray crystal structure of the E. coli MurE complexed with
its  product,  UDP-N-acetylmuramyl-tripeptide,  revealed
three  globular  domains,  out  of  which  two  domains  bear  a
topology equivalent to that of MurD (Fig. 6). Domain 1 in-
cludes 1-88 residues and contains five β-sheets encircled by
two α-helices, while domain 2 includes 90-338 residues and
contains a central six parallel β-sheet encircled by seven α-
helices. Domain 3 includes 340-497 residues and consists of
six β-sheets enclosed by five α-helices [105].

MurE shows a vital function in adding the third residue
of the peptidoglycan peptide moiety. The stereochemistry of
this third position is vital to regulate the extent of antibiotic
resistance as well as the cell characteristics and morphology.
Hence, MurE ligase catalyzes the addition of L-lysine or me-
so-diaminopimelic  acid  to  form  UDP-N-  acetylmura-
moyl-L-Ala-D-Glu-L-Lys/A2pm,  and  this  will  indirectly
make the enzyme act as a probable aim for the emergence of
antibacterial agents [106, 107]. Besides, if MurE successful-
ly carries the correct complementary amino acid substrate, it
will be able to maintain the peptidoglycan integrity because
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Fig. (8). MurE inhibitors from Hypercium acmosepalum.

Fig. (9). Isoxazole derivatives as MurE inhibitors.

it will enable the third residue of the peptidoglycan peptide
moiety to involve in the cross-linkages of the glycan strand
leading to peptidoglycan integrity. However, if it is not com-
plimentary,  it  will  lead  to  alterations  in  morphology  and
even cause the lysis of bacterial cells [108]. There are sever-
al inhibitors of MurE ligases. Fig. (8) depicts the chemical
structures of a few MurE inhibitors from Hypercium acmose-
palum.

For example, an antibacterial isolated from Hypercium
acmosepalum was found to hinder ATP-dependent MurE lig-
ase of Mycobacterium tuberculosis. Both hyperenone A and
hypercalin B were isolated from the aerial parts of Hyperci-
um acmosepalum using hexane and chloroform extracts de-
rived from the same. Both these agents are capable of ex-
hibiting  antibacterial  activity  against  multidrug-resistant
strains  of  Staphylococcus  aureus.  However,  only  hy-
perenone  A  show  growth  inhibitory  activity  against  My-
cobacterium tuberculosis and Mycobacterium bovis. When
both agents were tested on E. coli, they did not show any in-
hibitory  action.  However,  when  tested  on  ATP-dependent
MurE ligase of Mycobacterium tuberculosis, hyperenone A
showed inhibitory action, while no effect was observed on
the enzyme activity with hypercalin B [109]. Fig. (9) depicts
the isoxazole class of MurE enzyme inhibitors. For example,
3-bromo-4, 5-dihydroisoxazole derivatives, showed inhibito-
ry action without cytotoxicity.

The designing of the first phosphinate inhibitor of MurE
with structural features was done based on the MurD inhibi-
tor reported earlier. This compound hindered the reaction cat-
alyzed  by  MurE  with  an  IC50  value  of  1.1  µM.  Many  di-

aminopimelic acid analogues were also evaluated as subs-
trates or competitive inhibitors of MurE [110].

11.  MURF  (UDP-N-ACETYLMURAMOYL-TRIPEP-
TIDE--D-ALANYL-D-ALANINE LIGASE)

D-alanyl-D-alanine,  which  is  one  of  the  four  amide
bond-forming enzymes (MurF) from Streptococcus pneumo-
niae, plays a key role in bacterial survival because it is in-
volved in catalyzing the last cytoplasmic step of peptidogly-
can biosynthesis [109]. It catalyzes the ATP-dependent for-
mation of UDP-MurNAc-pentapeptide, being the most im-
portant part of the cell wall of bacteria [111, 112]. The cell
wall of Staphylococcus aureus consists of a peptidoglycan
structure that is highly cross-linked, where most of the pen-
taglycine branches of muropeptide units are combined with
the amino group of lysine and nearly all monomeric and ac-
ceptor muropeptides bear a carboxyl-terminal D-alanyl-D-
alanine residue. Following this, D-alanyl-D-alanine catalys-
es the formation of dipeptide followed by attachment of the
dipeptide  to  UDP-N-acetylmuramic  acid-tripeptide  by
MurF,  thus  forming  UDP-linked  MurNAc-pentapeptide
which is the building block of peptidoglycan. This dipeptide
plays an important role as its peptide bond boosts the cross-
linking reaction in the periplasmic space where there is the
absence of ATP, leading to the assemblage of the peptidogly-
can  [113].  Besides,  MurF  also  utilizes  D-amino  acids  as
dipeptide substrates  and receives a  wider  range of  various
substrates in comparison to all other types of Mur ligases. In
addition, MurF also shows the capability to incorporate non--
canonical  forms  of  D-amino  acids  into  the  peptidoglycan,
such as D-methionine. Due to environmental stresses, such
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as the entry into the stationary phase, the non-canonical D-
amino acids are usually produced, thus resulting in the re-
modelling of the peptidoglycan composition and structure.
Various MurF ligase inhibitors have been found. The crystal
structure of the E. coli  MurF enzyme revealed that it  con-
sists of three domains (PDB-ID: 1GG4) (Fig. 6) [114, 115].
Fig. (10) depicts the chemical structures of MurF inhibitors.
The  first  reported  MurF  enzyme  inhibitor  was  4-
phenylpiperidine.  It  interferes  with  cell  wall  biosynthesis
and shows antibacterial activity. It shows its inhibitory ac-
tion with a minimum inhibitory concentration of 8-16 µg/ml
against  E.  coli  and  even  includes  cell  lysis.  Additionally,
from the MurF binding assay, it was noticed that a series of
8- hydroxyquinolines caused the inhibition of the E. coli en-
zyme by binding to it. This proved that the antibacterial ac-
tivity is also exhibited by pharmacophoric modelling of 8-hy-
droxyquinolines which otherwise have restricted antibacte-
rial  activity.  However,  by  using  permeability  enhancers,
such as polymyxin B nonapeptide, there is a possibility of
having a reduction in the MIC values. In the present study
novel,  lead compounds were identified by the researchers,
which could inhibit the biological activity of the MurF pro-
tein. It plays a major role in the last step of the peptidogly-
can biosynthesis pathway. The predicted three-dimensional
structure of the MurF protein was evaluated. Molecular dy-
namics simulation studies were performed over 100 ns to as-
sess the stability and flexibility of the predicted protein. The
result of high throughput virtual screening rendered the top
three  compounds  Zinc-12134489,  May  bridge-11911,  and
Specs-10474 with high docking scores -6.3, -6.1, -5.9 kcal/-
mol and binding energies of -46.2, -35.4, -47.7 kcal/mol, re-
spectively.  The  compounds  were  predicted  to  establish
strong  hydrogen  bond  interactions  with  Thr28,  Asp29,
Lys43, Asn46, Phe47, Asp133, and Lys148 residues. Densi-
ty  functional  theory  described  the  higher  reactivity  of  the
screened  compounds.  Low  binding  gap  values  of  the  top
three hits, ranging from -0.04 eV to -0.06 eV, defines higher
chemical reactivity. Molecular dynamics simulation studies
were  performed  for  three  protein-ligand  complexes  that
showed  acceptable  RMSD  and  RMSF  ranges.  Predicted
ADME properties of the top lead compound were in the ac-
ceptable range. Thus, the identified three inhibitors were pre-
dicted to show significant inhibitory activities against MurF
that could be exploited to overcome the filarial infections af-
ter  experimental  validation [116].  The Gram-negative oral
pathogen Tannerella forsythia strictly depends on the exter-
nal supply of the essential bacterial cell wall sugar N-acetyl-
muramic acid (MurNAc) for survival because of the lack of
the  common MurNAc biosynthesis  enzymes  MurA/MurB.
The bacterium thrives in a polymicrobial biofilm consorti-
um. Thus, it is plausible that it procures MurNAc from Mur-
NAc-containing peptidoglycan (PGN) fragments (muropep-
tides) released from cohabiting bacteria during natural PGN
turnover or cell death. There is indirect evidence that in T.
forsythia, an AmpG-like permease (Tanf_08365) is involved
in cytoplasmic muropeptide uptake. In E. coli, AmpG is spe-
cific for the import of N-acetylglucosamine (GlcNAc)-anhy-
droMurNAc(-peptides),  which  are  common PGN turnover
products, with the disaccharide portion as a minimal require-

ment.  Currently,  it  is  unclear  which  natural,  complex
MurNAc  sources  T.  forsythia  can  utilize  and  which  role
AmpG plays therein [117].

The diarylquinolines, DQ1 and DQ2, represented in Fig.
(10), have the same structure as the compound, but there is
only one difference which is at the beta position to the quino-
line ring in DQ2. These two compounds have very limited in-
hibitory action due to their low permeability into the cells.
Hence, both of them will not show inhibitory action against
the  wild  type  of  E.  coli  and  gram-negative  bacteria.  DQ2
can act on gram-positive bacteria because it is more flexible
compared to DQ1, which has a phenethyl group. However,
the problem related to low permeability can be resolved by
adding permeability enhancers,  such as polymyxin B non-
apeptide. Cyanothiophene derivatives as MurF ligase inhibi-
tors  from Streptococcus  pneumoniae  and  E.  coli  were  ex-
plored  (Fig.  10).  Through  methodical  structural  modifica-
tions of the parent compounds, they found a micromolar in-
hibitor of MurF from S. pneumoniae (IC50 = 0.3 μM), E. coli
((IC50 = 55 μM), and S. aureus (IC50 = 120 μM) [118]. Phos-
phinate inhibitors of MurF known so far are aminoalkylphos-
phinate  compounds  synthesized  as  transition-state  ana-
logues. They operate as reversible competitive inhibitors of
the E. coli MurF enzyme, with Ki values in the range of 200
to 700 mM. No antibacterial activity was exhibited by these
compounds on standard strains. The non-hydrolyzable ATP
analogue AMP-PCP was evaluated on the MurF-catalysed re-
action and revealed to be an effective inhibitor of ATP hy-
drolysis and was competitive with ATP.

One of the main aspects to be considered in the design of
future Mur synthetase inhibitors is the conserved binding pat-
terns  and the  common kinetic  mechanism amongst  MurC,
MurD, MurE, and MurF. An inhibitor will possibly attach to
and  hinder  more  than  one  enzyme  that  identifies  homolo-
gous binding motifs. This would result in much more effec-
tive inhibition of the pathway. Additionally, the frequency
of the rise of resistance to such an inhibitor would be much
lesser as mutations causing resistance would require to take
place simultaneously in more than one target gene.

12.  DEVELOPMENT  OF  MULTI-TARGETS-BASED
INHIBITORS

Multi-target inhibitors are a better approach to inhibiting
Mur enzymes effectively. The blocking of nucleotide subs-
trate binding is mainly observed in MurC, MurD or MurE,
and MurF [119, 120]. This is because all these Mur ligases
share  common  characteristics  concerning  UDP-binding
mode.  By  blocking  either  one  of  the  groups  of  enzymes,
binding effects  will  be interrupted.  An example of a com-
pound that can perform this action is 5-benzylidene thiazo-
lidine-4-one.  It  is  capable  of  inhibiting  MurD,  MurE,  and
MurF. The second target of action can be the ATP binding
site. This is because most of the Mur ligases with ATP-bind-
ing  domains  have  similar  structural  confirmations  and  se-
quences, and the mechanism is not closely related to the hu-
man enzymes utilizing ATP [121]. The specialty of the ATP
binding site of bacteria is that the Mur ligases consist of
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Fig. (10). 4-phenylpiperidine, diarylquinoline, and cyanothiophene derivatives as MurF inhibitors.

P-loop confirmation, which is different from the ATP-bind-
ing loop in the human system [9, 122]. Compounds, such as
N-acylhydrazone can act as potent inhibitors of MurC and
MurD as  both  are  likely  to  aim  for  the  ATP  binding  site.
Since the amino acid substrate is needed for the catalytic re-
action of bacteria, the inhibition of this function can be done
by mimicking the structure of the amino acid substrate. Phos-
phonate derivative is the first analogue of Mur enzyme in-
hibitors, and the compound consists of a dipeptide analogue
connected to uridine diphosphate, a spacer being hydropho-
bic [123, 124]. These derivatives are reported to inhibit both
MurC  and  MurD  ligases.  Sulphonamide  derivatives  like
naphthalene-N-sulfonyl-D-glutamic  acid  have  been  de-
signed as the MurD enzyme inhibitors [118, 125]. This is be-
cause of the presence of 1,3-dicarboxylic acid in sulphon-
amide  derivatives  which  can  inhibit  MurC  and  MurD.
Another  mechanism  of  multi-target  inhibitors  utilizes  the
conformational change of Mur ligase towards substrate bind-
ing.  These  features  allow the  researchers  to  develop com-
pounds  that  can  be  capped  inside  the  inactive  open  state,
thus, interfering with the binding of the substrate on the ac-
tive site [126]. Fig. (11) depicts the chemical structures of se-
lected inhibitors of multiple Mur enzymes. The screening of
a series of ATP-competitive kinase inhibitors on E. coli Mur
ligases was conducted, and five scaffolds were found that in-
hibit at least two of these ligases (MurC, D, and F) [11]. The
furan-containing aza-stilbene derivative (Fig. 11) showed a
competitive inhibition of MurD activity towards D-glutamic

acid, and NMR studies revealed that it binds to the binding
site of D-glutamic acid, independent of the enzyme closure
caused by ATP [24]. Meanwhile, in the same series, a thiazo-
line-containing  aza-stilbene  derivative  (IC50  MurC:  82,
MurD: 85, MurE: 150, and MurF: 71 μM) was also found to
exhibit comparable inhibition of multiple Mur ligases (Mur-
C-MurF) and exhibited moderate antibacterial activity (Fig.
11). An attempt was done to replace the diphosphate group
of UDP-Mur NAc with a 1,2,3-triazolo spacer where, out of
several compounds synthesized and tested, one N-acetylglu-
cosamine analogue emerged as the best inhibitor against the
Mycobacterium  tuberculosis  MurA-MurF  enzymes  recon-
struction pathway with a 56% inhibition at 100 μM [17]. Fur-
ther,  the  optimization  of  benzene-1,3-dicarboxylic  acid  to
2,5-dimethylpyrrole derivatives was done and found to ex-
hibit  dual  MurD/MurE  inhibition  properties,  which  were
found in the virtual screening campaign. Compounds were
analyzed against E. coli MurC-MurF enzymes in biochemi-
cal  inhibition  assays  where  the  compounds  containing
benzene-1,3-dicarboxylic  acid  2,5-dimethylpyrrole  linked
with five-membered rhodanine moiety exhibited inhibition
of  multiple  MurC-MurF  ligases  in  the  micromolar  range
[127] (Fig. 11). In another study, furan-based benzene-1,3-di-
carboxylic acid derivatives were reported to act as multiple
MurC-MurF ligase inhibitors [128]. Table 1 represents the
various Mur enzyme inhibitors that have been studied so far
[30].
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Table 1. Various mur enzyme inhibitors.

S. No. Class of Inhibitor Enzyme Targeted

1 Benzothioxalone derivatives

Mur A

2 Cyclic disulfide, pyrazolopyrimidine and purine analogues

3 Sulfonyloxy anthranilic acid derivatives

4 Imidazole derivatives

5 Aminotetralone derivatives

6 Peptide derivatives

7 Sesquiterpene lactones derivatives

8 Thimerosal, thiram and ebselen

9 Tulipalines, tuliposides and their derivatives

10 Terreic acid

11 Avenaciolides

12 4-thiazolidinones derivatives

Mur B
13 3,5-dioxopyrazolidines derivatives

14 5-hydroxy-1H-pyrazole-3 (2H) -one derivatives

15 Imidazolinones derivatives

16 Pyrazolopyrimidines derivatives

Mur C17 Phosphinates derivatives

18 Benzylidene rhodamine derivatives

19

Phosphinate derivatives

Mur D

Carbamate and amide substituted phosphinates derivative

Sulfonamide substituted phosphinates derivatives

20 2-oxoindolinylidene derivatives

21 Naphthalene-N-sulfonyl-D-glutamic acid derivative

22 Macrocyclic inhibitors

23 N-sulfonyl-glutamic acid derivatives

24 Coumarin derivatives

25 Polycyclic derivatives

26 Inhibitors from Hypericum acmosepalum (hyperenone A and hypercalin B)

Mur E
27 Quinolones derivatives

28 Aporphine alkaloid derivatives

29 Isoxazole derivatives

30 Thiazolylaminopyrimidine derivatives

Mur F

31 4-phenylpiperidine derivative

32 Diarylquinone derivatives

33

Miscellaneous inhibitors

Inhibitors from S. pneumoniae

(-) -epigallocatechin gallate

Multitarget Inhibitors

34 Naphthyl tetronic acid derivatives Mur A-Mur E

35 Furan-based benzene mono- and dicarboxylic acid derivatives Mur C-Mur F

36 N-acylhydrazones derivatives Mur C and Mur D

37 5-benzylidenethiazolidin-4-ones derivatives Mur D, Mur E and Mur F

38 Feglymycin Mur A and Mur C
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Fig. (11). Chemical structures of various compounds known to inhibit multiple Mur ligases.

13. ANTIBIOTIC DEVELOPMENT OF INHIBITORS
WITHIN BACTERIAL CYTOPLASM:  A  NEW ARE-
NA  THROUGH  PERIPHERAL  GLYCOSYLTRANS-
FERASE  MURG  GENE

The development of novel antibiotics targeting bacterial
cell wall synthesis is a relevant approach to designing novel
inhibitors. The biosynthesis of peptidoglycan in the cell wall
of bacteria is a complicated process that involves enzymatic
reactions occurring in the cytoplasm for the formation of nu-
cleotide precursors. The synthesis of lipid-linked intermedi-
ates takes place through polymerization reactions on the in-
side and outside of the cytoplasmic membrane. The cytoplas-
mic steps of the biosynthesis of peptidoglycan can be catego-
rized into four types of reactions that result in the synthesis
of  UDP-N-acetylglucosamine  from  fructose  6-phosphate,
UDP-N-acetylmuramic  acid  from  UDP-N-acetylglu-
cosamine,  UDP-N-acetylmuramyl-pentapeptide  from  UD-
P-N-acetylmuramic acid and D-glutamic acid and dipeptide
D-alanyl-D-alanine concerned different Mur genes (Fig. 1).
Both  processes  have  reactions  whose  catalysis  is  done

within  the  cytoplasm.  Initially,  the  formation  of  UDP--
MurNAc (UM) by MurA and MurB gene and attachment of
amino acids by MurC onto UM, D, E, F to generate UM- di,
tri and pentapeptide take place (Fig. 1). The possible exis-
tence of  different  cytoplasmic complex molecules  by Mur
enzymes is well established [92]. Mur genes exist in a single
operon, and their pairs are generally joined to give rise to a
single polypeptide. Mur enzymes could exist as a complex
whose build-up makes the accessibility of small molecules
to  their  active  sites  limited.  Bacterial  morphogenesis  is  a
method  that  is  associated  closely  with  the  biosynthesis  of
peptidoglycan. Lipid II, which is the basic building block of
peptidoglycan, is formed through the action of Mur enzymes
A-F in the cytoplasm of bacteria (Fig. 1). As Lipid II is vital
for both the elongation of the cell wall and division, these en-
zymes  are  mandatory  for  the  working  of  both  the  elonga-
some and the divisome. The divisome and elongasome are
bacterial protein complexes that are responsible for peptidog-
lycan synthesis during cell division and elongation, respec-
tively.  The divisome is  a  membrane protein complex with
proteins  on  both  sides  of  the  cytoplasmic  membrane.  In
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gram-negative cells, it is located in the inner membrane. The
divisome is nearly ubiquitous in bacteria, although its com-
position  may  vary  between  species.  The  elongasome  is  a
modified version of the divisome without the membrane-con-
stricting FtsZ-ring and its associated machinery. The elonga-
some is present only in non-spherical bacteria and directs lat-
eral insertion of PG along the long axis of the cell, thus al-
lowing cylindrical growth (as opposed to spherical growth,
as in cocci).

Moreover, MurE and MurF interact with a peripheral gly-
cosyltransferase gene which is a molded discrete oligomer.
The oligomeric assembly of MurG may allow it to play a bo-
nafide scaffolding role for a latent Mur complex, thus lead-
ing to the effective transportation of peptidoglycan-building
blocks toward the inner membrane leaflet. This prompts the
fact that MurG can serve as a scaffold for Mur enzyme, help-
ing  restrict  the  diffusion  of  peptidoglycan  intermediate
within the cytoplasm and regulating them towards the mem-
brane’s  inner  side  [13].  The  structural  nature  of  the  exis-
tence of such complex molecules is still not studied properly
to date. MurG is a necessary enzyme interacting and/or co-
localizing with other Mur genes, that is, MurD, E, and F. It
is a peripheral membrane protein interacting with cytoplas-
mic membrane phospholipids. It is observed that MurG acts
as a dimer; however, the structural determinants and functio-
nal importance of this arrangement have not been stated to
date. The glycosyltransferase gene also links a GlcNAc moi-
ety to Lipid I,  leading to the formation of Lipid II,  whose
translocation is further done by flippases towards the peri-
plasmic space. As there is a lack of research on the structure
and role of this arrangement, it provides immense scope for
developing novel inhibitors as antimicrobials targeting the
peripheral glycosyltransferase MurG gene.

CONCLUSION
Multidrug  resistance  is  undoubtedly  a  global  public

health concern and mandates an urgent need to develop nov-
el  antibacterial  therapy  targeting  novel  targets  in  bacteria.
The system for the biosynthesis of peptidoglycan is one of
the rich sources of valid druggable targets for the discovery
and development of effective antibacterial therapeutics. Mur
enzymes play imperative roles in the biosynthesis of bacte-
rial peptidoglycan. It is one of the major targets for develop-
ing antibacterial agents. The inhibition of Mur enzymes can
lead to the destruction of bacterial peptidoglycan, thus, in-
hibiting  the  bacteria.  Hence,  Mur  enzyme  inhibitors  are
good antibacterial agents and can be called antibiotics. Gen-
erally, Mur enzyme inhibitors can act on the six major fami-
lies  of  Mur  enzymes,  viz.  MurA,  MurB,  MurC,  MurD,
MurE, and MurF. These Mur enzymes have different func-
tions in the formation of bacterial peptidoglycan. Their in-
hibitors act differently to inhibit each enzyme specifically.
The antibacterial drug development as multiple Mur enzyme
inhibitors is essential as the problem of bacterial resistance
is very common at present. Thus, more antibacterial agents
targeting novel pathways are needed to treat a variety of re-
sistant bacterial infections effectively.
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