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• Novel in silico ecotoxicity predictive tool
for endocrine disruptor chemicals.

• First moving average–multitasking
models for EDCs environmental risk as-
sessment.

• Detection of the determining factors for
eliciting higher ecotoxicity of EDCs.

• N-S and C-N distances are among the
ecotoxicity determining factors for EDCs.

• Open-access tools foster reproducibility
and screening for faster policy decisions.
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Manufactured substances known as endocrine disrupting chemicals (EDCs) released in the environment, through the
use of cosmetic products or pesticides, can cause severe eco and cytotoxicity that may induce trans-generational aswell
as long-term deleterious effects on several biological species at relatively low doses, unlike other classical toxins. As the
need for effective, affordable and fast EDCs environmental risk assessment has become increasingly pressing, the pres-
ent work introduces the first moving average-based multitasking quantitative structure-toxicity relationship (MA-mtk
QSTR)modeling specifically developed for predicting the ecotoxicity of EDCs against 170 biological species belonging
to six groups. Based on 2,301 data-points with high structural and experimental diversity, as well as on the usage
of various advanced machine learning methods, the novel most predictive QSTR models display overall accuracies
> 87% in both training and prediction sets. However, maximum external predictivity was achieved when a new mul-
titasking consensus modeling approach was applied to these models. Additionally, the developed linear model pro-
vided means to investigate the determining factors for eliciting higher ecotoxicity by the EDCs towards different
biological species, identifying several factors such as solvation, molecular mass and surface area as well as the number
of specific molecular fragments (e.g.: aromatic hydroxy and aliphatic aldehyde). The resource to non-commercial
open-access tools to develop the models is a useful step towards library screening to speed up regulatory decision
on discovery of safe alternatives to reduce the hazards of EDCs.
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1. Introduction

Endocrine disrupting chemicals (EDCs) or endocrine disruptors, have
been evidenced to disturb the functionalities of hormones leading to detri-
mental health hazards (Lauretta et al., 2019; De Coster and van Larebeke,
2012; Kumar et al., 2020). Even though regulation of hormone receptors
3
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remains the main mechanisms of EDCs, other mechanisms such as alter-
ation in metabolism and transport of hormones or the inhibition of bio-
syntheses of hormones have also been reported (Vafeiadi et al., 2015;
Schug et al., 2011). Moreover, the wide array of receptors classes through
which EDCs act, such as the molecular mechanisms of the reproductive sys-
tem, may be contributing to infertility and subfertility (De Coster and van
Larebeke, 2012). The situation is the more worrisome as some of the mech-
anisms upon which EDCs act via this plethora of receptors are unknown
(Kumar et al., 2020).

As EDCs comprise in their category a diverse and wide array of
chemicals, such as pharmaceuticals, cosmetic products, pesticides, herbi-
cides and even some natural chemicals (Marty, 2014), there is a significant
probability of their release in high amounts to the environment, which pre-
sents a severe hazardous effect on various biological species including
humans, something that raised increasing awareness in recent years
(Velmurugan et al., 2017). In addition, EDCs, unlike other classical toxins,
may induce trans-generational as well as long-term deleterious effects on
several biological species at relatively low doses (Kumar et al., 2020;
Velmurugan et al., 2017).

As it become clear the urgent need for regular, if not continuous, envi-
ronmental assessment of ECDs release, the biological testing of EDCs
against different species, similar to other hazardous materials released in
the environment, is expensive, time-consuming, and demands usage of
laboratory animals (He et al., 2018; Khan et al., 2019). The last decade
has witnessed the advocating of many regulatory agencies worldwide for
the application of in silico modeling for prediction of hazardous effects
for newly developed chemicals in order to address these shortcomings.
Such recommendations come with no surprise as different machine learn-
ing techniques, thanks to the development of highly accurate models, pro-
vide a highly effective cost-effective strategy for prediction of the
environmental toxicity of new chemicals (Heo et al., 2019; Sheffield and
Judson, 2019).

In fact, there have been recentworks attempting to develop quantitative
structure toxicity relationship (QSTR) models with diverse classes of EDCs.
In 2018, one-target conventional QSTRmodels on the toxicity of EDCs have
been developed for targeting eight different types of fish (He et al., 2018),
while in 2019, two works proposed toxicity prediction for EDCs, one
through deep learning driven classification based QSTR models for 125
and 114 chemicals with inhibition against the sex hormone-binding globu-
lin and estrogen receptor (Heo et al., 2019), and the other with not only the
development of one-target QSTR models characterizing the environmental
toxicity EDCs for fourteen species that belong to nine different species
groups, but also with interspecies quantitative structure–toxicity–toxicity
relationships (i-QSTTR) models (Khan et al., 2019). Similarly, the Monte
Carlo methodology has been successfully implemented to develop QSTR
models for determining the activity of a range of endocrine disrupting
chemicals (Toropova et al., 2015).

Notwithstanding, these works did not resource to the so-called multi
target or multi-tasking (mtk) QSTR modeling approaches, which allow to
develop single QSTR models that can probe the bio-physicochemical pro-
files of chemicals or materials in multiple experimental and/or theoretical
conditions, providing more feasible and versatile in silico tools.

In the present study, we opted for a moving average-based multitasking
modeling (MA-mtk) approach to develop effective in silico classification
tools for the future toxicity prediction and environmental risk assessment
of EDCs versus numerous environmental species. Though the details of
this classification approach and its latest advances have been extensively
described and discussed lately (Speck-Planche and Cordeiro, 2015; Speck-
Planche and Cordeiro, 2017; Halder et al., 2022a), a brief summary for in-
troductory purposes will be made.

MA-mtk modeling takes advantage of the Box-Jenkins moving average
algorithm (Box et al., 2015) to derive models with as many experimental
assay and/or theoretical conditions as possible, with the resulting models
being able to predict outcomes against those conditions simultaneously
(Speck-Planche and Cordeiro, 2015; Speck-Planche and Cordeiro, 2017;
Halder et al., 2022a; Kleandrova et al., 2021; Ambure et al., 2019; Halder
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and Cordeiro, 2021a). Such an approach thus allows to overcome the con-
ventional ‘one target’QSTRmodels' handicap, i.e., overcome the one target
– one bioactivity that characterizes the later conventional strategy.

Essentially, the Box-Jenkins based moving average approach applies
simple formula to produce deviation descriptors, Δ(Di)cj, from the original
descriptors (Di), incorporating both structural and experimental/theoreti-
cal variations:

Δ Dið Þcj ¼ Di � avg Dið Þcj (1)

where the avg(Di) cj stands for the arithmetic mean of active/positive data-
points of a specific element of the experimental and/or theoretical condi-
tions (ontology), cj.

To assure the dynamic nature of the ontological variable, thus enabling
to adjust to any experimental conditions, cj is usually defined as dependent
on the types of measures of toxicity (e.g. LC50), different bio-targets
(e.g. bacteria), assay times (e.g. duration of exposure), and/or any other
variable that will build a unique identity for the toxicological profile of
the problem. Specifically here, to define the variations in experimental
assay conditions of the data retrieved from the ECOTOX database
(https://cfpub.epa.gov/ecotox/), three experimental elements were con-
sidered, namely: the species name (i.e., spn) against which the chemical
have been assayed; the species group (i.e., spg) specifying under which
group the species belongs to; and the concentration type (Standardized)
(i.e., co), where co can be ‘total’, ‘formulation’ and ‘active ingredient’. Fol-
lowing the ECOTOX terminology, the term ‘active ingredient’ refers to the
chemical substance within a product that causes a toxic response. The ‘for-
mulation’ term is specifically used in the context of commercial products
that have been prepared for practical use, such as pesticides. Finally, the
term ‘total’ is used to refer to the overall, un-ionized or dissolved concentra-
tion of chemicals present.

The MA-mtk QSTR classification models can then be established by
implementing a particular modeling technique (e.g. LDA) as follows:

Toxcj ¼ a0 þ ∑
k
bk ⋅ Δ Dið Þcj (2)

in which a0 stands for the constant term, bk for the coefficients of the input
independent variables and Toxcj for the toxicological endpoint (in this case,
a categorical binary variable) to be predicted for any chemical i under a spe-
cific set of experimental conditions cj.

In this work, both linear and non-linear MA-mtk models were devel-
oped by applying a range of feature selection algorithms and machine
learning tools, as well as by taking in consideration the guidelines of
the Organization for Economic Co-Operation and Development (OECD)
(Cumming et al., 2013) for their successful implementation in regulatory
assessments. In so doing, not only the developed models in the present
workwere employed formore than 2,000 toxicity data recorded on 170 en-
vironmental species belonging to six different species groups, but also sev-
eral consensus models were derived to pick the one with maximum
predictive accuracy. In fact, consensus prediction is often preferred to im-
prove the predictivity as an ensemble of models can provide better results
than one single model (Roy et al., 2018; Valsecchi et al., 2020). Moreover,
the open-access in-house tool QSAR-Co-X (Halder and Cordeiro, 2021a)
was used here for the calculation of deviation descriptors as well as
for setting up most of the linear and non-linear models. The other
employed open-access tools will be discussed in the appropriate sections
of the paper.

This MA-mtk in silico modeling approach to the environmental risk
assessment of EDCs is not only novel but it providesmechanistic interpreta-
tions towards higher ecotoxicity of EDCs, which are also discussed
in detail in the present work. Furthermore, besides providing
identification of the determining factors at the root of high ecotoxicity in
the EDCs, it also delivers a model landscape for future and subsequent in
silico approaches aiming to obtain safe alternatives to reduce the hazards
of EDCs.

https://cfpub.epa.gov/ecotox/
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2. Materials and methods

2.1. Dataset collection, curation and descriptor calculation

The dataset used for setting up the QSTR models consist of 139
chemicals collected from recent work (Khan et al., 2019), with a specific
toxicological end point LC50 (50% lethal concentration; duration: 4 days)
against 170 species taken from the ECOTOX database.

Placing cut-off value for the data points regarding the measure of toxic-
ity LC50 follows the guidelines of the globally harmonized system of classi-
fication and labelling of chemicals (GHS) (Globally Harmonized System of
Classification and Labelling of Chemicals (GHS), 2021), i.e., a chemical shall
pass from Category 4 (‘Warning’) to Category 3 (‘Danger’) if the inhalation
values are 10mg/l< LC50< 20mg/l for vapor, and 1mg/l< LC50 < 5mg/l
for dust/mist. Also in GHS, it is mentioned that for aquatic animals, acute
toxicity Level 2 (which is close to ‘Warning’) is in fact 1 mg/l < LC50

(96 hr.) < 10 mg/l. As such, fixing the dose as 5 mg/l and considering
that both the mean and median molecular weights of the dataset are ap-
proximately 250 mg, the cut-off value was set to 0.02 mM (=5/250).
Therefore, data-points with LC50 value less than 0.02 mM were considered
as toxic (Toxcj = +1) and otherwise non-toxic (Toxcj = −1). Yet some
data-points were found to be expressed in “>” (greater than) or “<” (less
than) notations. Thanks to that, 83 toxicity data-points with LC50 values
expressed as > 7.5×10−5 mM to > 0.019 mM were grouped as toxic
(Toxcj = +1), whereas 5 toxicity data-points with LC50 values expressed
as < 0.07 mM to < 1.95 mM were treated as non-toxic (Toxcj = −1).

The removal of duplicated molecules ensued, taking in consideration
that for MA-mtkmodeling, duplicate samples are not merely defined by du-
plicate structures since the dataset may consist of duplicate structures if
their experimental assay conditions are varied. After the analysis and subse-
quent removal 2,301 datapoints were obtained.

The Simplified Molecular Input Line Entry System (SMILES)
(Weininger, 1988) notation of the chemicals was retrieved from ECOTOX,
and after being converted to .sdf format using the Discovery Studio Visual-
izer tool (BIOVIA, 2021), these were further processed by the Standardizer
tool (Standardizer, 2010) as described in our previous work (Halder et al.,
2022b). Calculation of descriptors for the standardized structures then
followed using the Dragon software (Mauri et al., 2006) under the
OCHEMwebserver (Sushko et al., 2021). For the calculation of 3D descrip-
tors, geometrical optimization of the chemical structures was performed
using the Corina software (Sadowski et al., 2002) under the OCHEM web
platform. Extensive details of the dataset used in the current work can be
found in Table S1.

2.2. Dataset division and descriptor pre-treatment

The dataset division plays a particularly important role in MA-mtk
QSTR modeling. The QSAR-Co-X tool was first used to divide the data
into a training set and a validation set by employing the k-means cluster
analysis (k-MCA) technique (Gore Jr., 2000), where 30% data was placed
in the test set. The allocation of this percentage of data to the test set was
provided by the k-MCA rational data-distribution strategy in which after
both the response and independent variables being clustered into ten
groups, 30% of the data was extracted randomly (random seed 3 in
QSAR-Co-X) from each group to build the validation set. After dividing
the starting dataset into a training set (70%) and validation set (30%), the
Box-Jenkins based moving average technique was applied to the training
set data to calculate the deviation descriptors, after which this dataset
was randomly (random seed 4 in QSAR-Co-X) divided into a sub-training
set (80%) and a test set (20%). In addition, the average descriptors values
calculated for the training set were deployed to calculate the deviation de-
scriptors for the validation set.

The models developed in the current work were developed with the
sub-training set data, while their external predictivity was assessed with
both the test and the validation sets. As the validation set does not partici-
pate either in the descriptor calculation or in the model development, it
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serves as a ‘true’ prediction set. Therefore, the external predictivity against
this prediction set plays a major role in the selection of the best QSTR
models.

Moreover, the test set, which participates in the calculation of the
deviation descriptors serves multiple purposes. Though similarly to the vali-
dation set, it is also used to assess the models' external predictivity, it may
be used as a calibration set for judging themost predictivemodel to be further
analyzed with the validation set (Halder et al., 2022a, 2022b; Halder and
Cordeiro, 2021a). Notice that if a large difference is found regarding the
predictivities obtained against these two prediction sets, this may indicate
that the developedmodel is slightly biased towards themoving average tech-
nique. As such, the predictivity towards the validation set becomes more im-
portant as far as the model selection is concerned for future predictions.

Before developing the models, a descriptor pre-treatment was carried
out to remove highly correlated and invariant descriptors by setting a cor-
relation cut-off value of 0.95 and a variation cut-off of 0.001, narrowing
down the initial more than 15,000 deviation descriptors to the final 3246
deviation descriptors considered for model development.

2.3. Linear model development

In this work, we opted for the linear discriminant analysis (LDA) tech-
nique (Tinsley and Brown, 2000) to find classification-based QSTR linear
models that best describe the target toxicological endpoint (i.e.: LC50). As
the development of linear models largely depends on the feature selection
algorithm applied, multiple LDA models were developed using three
different procedures, namely: (a) fast-stepwise selection (FS), (b) stepwise
forward selection (SFS) and (c) genetic algorithm (GA) (Halder and
Cordeiro, 2019).

A maximum of ten descriptors was allowed in all linear QSTR models
for comparative analyses of their statistical parameters. In FS, the descrip-
tors with maximum significance with the response variable, i.e., the lowest
p-value, are included step-by-step and these are retained/dropped depend-
ing on its concordance with other descriptors of the model. For this feature
selection technique, both ‘p-value to enter’ and ‘p-value to remove’were set
as 0.05 (Halder and Cordeiro, 2021a). Regarding SFS, the LDAmodelswere
generated by varying different scoring functions, i.e., through the accuracy
and scores obtained from the area under the receiver operating characteris-
tic curve (ROC-AUC score) and selected by cross-validation (CV) techniques
as follows: no CV, 5-fold CV and 10-fold CV. Note that the Python-based
Mlxtend library (http://rasbt.github.io/mlxtend/) was utilized to produce
the SFS-LDA models with the help of QSAR-Co-X (Halder and Cordeiro,
2021a). For setting up the GA-LDA models, we used another in-house
Java-based open access tool (i.e.: QSAR-Co) with the default parameters
(Ambure et al., 2019; Halder and Cordeiro, 2019).

The most predictive models obtained from these feature selection algo-
rithms were subjected to an analysis named ‘post-selection similarity
search-based modification’, or simply PS3M, with the help of the open-
access in-house tool named PS3M_v2 (available at https://github.com/
ncordeirfcup/PS3M_v2) (Halder and Cordeiro, 2020). A full in-depth de-
scription of this methodology can be found elsewhere (Halder et al.,
2022b; Halder and Cordeiro, 2021b) aswell as in Supplementarymaterials.

2.4. Non-linear model development

A range of non-linear classification QSTR models was developed in this
workwith different types of descriptors, namely: the descriptors of themost
predictive linear model, 3,246 deviation descriptors obtained after pre-
treatment, and the descriptors selected from differential Shannon entropy
(dSe). The IMMAN software (Urias et al., 2015) was utilized for performing
the dSe based feature selection as descriptors selected by this technique
have been reported to be highly significant in non-linear MA-mtkmodeling
efforts carried out in recent years (Speck-Planche, 2020). Additionally, the
feature extraction technique so-called genetic algorithm-based k-nearest
neighbors (GA-kNN) (Cover and Hart, 1967; Gunturi et al., 2010) extracted
the most significant descriptors from the pre-treated 3246 descriptors, by
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employing the Python based sklearn-genetic program (https://github.com/
manuel-calzolari/sklearn-genetic) that utilizes a ‘deap’ function for running
GA. An adequate choice of the parameters used for running the GA (popu-
lation: 100; mutation probability: 0.2; cross-over probability: 0.5; number
of generations: 100; number of generations no change: 10; cross-over inde-
pendent probability: 0.1; mutation independent probability: 0.05; scoring:
accuracy; cross-validation: 5) and the kNN (number of neighbors: 12;
weights: uniform; algorithm: auto) allowed extraction of the key number
of descriptors.

The non-linearmodelswere developed by employing sixmachine learn-
ing (ML) classifier tools, namely: (a) kNN; (b) Random Forests (RF);
(Breiman, 2001) (c) Support Vector Classifier (SVC) (Boser et al., 1992);
(d) Multilayer Perception (MLP) (Guang-Bin and Babri, 1998);
(e) Gradient Boosting (GB) (Friedman, 2001); and (f) Deep Neural Net-
works (DNN) (Muratov et al., 2020; Sosnin et al., 2018). Save for DNN,
the ML classifier tools were established using QSAR-Co-X (Module
2) through hyperparameter optimization, i.e., following a 5-fold cross-
validation carried out with the sub-training set to determine the optimized
parameters (Halder and Cordeiro, 2021b). A detailed description of the pa-
rameters varied during this ML optimization process has been provided be-
fore (Halder and Cordeiro, 2021a). Wherever applicable, a random seed
value of 42 was set in the QSAR-Co-X tool.

The DNN models were built using the Python-based Keras module
(https://www.tensorflow.org/api_docs/python/tf/keras). The basic archi-
tecture of this DNN (vide Table S2) was adopted from the literature (Sosnin
et al., 2018) and it consists of six hidden layers with a gradual decrement
in the number of neurons and activation function Relu. Hyperparameter op-
timization was performed with the sub-training set to optimize the learning
rate, batch size and epochs using 5-fold CV. Details regarding the implemen-
tation of these tasks are provided in the exemplary Jupyter notebook file:
DNN_M3PS3M.ipynb, available at https://github.com/ncordeirfcup/
Endocrine_disruptors. The external predictivity of the optimized models
was first established using the test set and finally with the validation set.

2.5. Model evaluation

The statistical robustness and predictivity of the various models was
made by resorting to the QSAR-Co-X tool as reported in our previous
work (Halder and Cordeiro, 2021a). Full details about the statistical param-
eters used for assessing the quality of the models can be found in Supple-
mentary materials.

Nomatter how validated any QSTR themodelmight be, it is also impor-
tant to assess its applicability domain (AD), that is, the scope within which
it makes reliable predictions for new chemicals. For such a goal, the appli-
cability domain of both the linear and non-linear models were determined
by using the standardization (Roy et al., 2015) and confidence estimation
approaches (Ambure et al., 2018), respectively.

2.6. Consensus modeling

Finally, we resort to consensus modeling for checking if all combina-
tions of the most predictive models will eventually lead to improved
models. It should be noted that, in consensus modeling, using an odd num-
ber of models can foster a more straightforward classification, given that
the prediction appearing maximum times can be taken as the consensus
prediction result. In contrast, for an even number of models a conflict
might appear when prediction of 50% models is found to be opposite. To
overcome this, the following rules are proposed and implemented:

(a) An odd number ofmodels implies the dependence of the consensus pre-
diction on the predictions maximum voting, as these are obtained from
a maximum number of models.

(b) When an even number of models are involved, then there is either con-
sensus or conflict. In case of conflict, resource to the posterior probabil-
ity of themodels should follow and the predictionwithmaximumvalue
posterior probability was counted.
4

A novel tool, integrated to QSAR-Co-X, was developed to facilitate fast
calculations of consensus predictionwith several models for a large number
of data-points. In this new module, the users may provide as many as
models in Excel format data and results of all possible combinations are pro-
duced according to the rules described above.

3. Results and discussion

3.1. Linear MA-mtk model

As referred to above, we began by seeking mtk-QSTR classification-
based linear models derived from the sub-training set, by combining the
LDA and the three different feature selection algorithms (i.e.: FS, SFS and
GA) along with DRAGON descriptors for the structure representation of
the chemicals understudy. A summary of the statistical performance for
these eight models (models M1-M8) is given in Table S3. As can be seen,
the statistical results clearly indicate that non-stochastic feature selection
procedures such as FS and SFS aremore successful for achievingmore accu-
rate LDA models compared to stochastic ones like GA. Moreover, M6, M2,
M7 and M3 are found as the four most predictive models, with MCC
(MCC can take values from−1 to+1, in which−1 stands for total incon-
sistency between predictions and observations, 0 for random and +1 for
perfect predictions) values of 0.716, 0.715, 0.700 and 0.693, respectively
(Boughorbel et al., 2017). These four models were then subjected to
PS3M analysis in search for more predictive models, having all save for
modelM6 yieldedmodels with a higher statistical quality. The statistical re-
sults of the PS3M-based models are shown in Table S4. The M3p model in
Table S4, with the highest average MCC, was developed starting from M3
after ten steps of PS3M, as shown in Fig. S1. In each PS3M step, a new
model was created by replacing one descriptor of the existing model with
another similar descriptor with low Euclidean distance from it. After each
step, the new model was accepted only when its internal predictivity was
improved or stayed the same. When the accuracy towards the sub-
training set remained unaltered (cf. steps 6–8), the test set was used as a cal-
ibration set. Fig. S1 demonstrates that in each step, the overall predictivity
of the models kept on increasing to a steady state. Regarding models M7
and M2, the PS3M analysis yielded better models after three steps and
one step, respectively.

The resulting best-predictive model found by PS3M (a ten-variable
equation, model M3p) is given below, whereas its selected descriptors are
shown in Table S5.

Toxcj ¼ þ0:498Δ X2solð Þspg þ 5:225Δ R5mþð Þspn
� 0:047Δ P_VSA_LogP_4ð Þco þ 3:487ΔðnArOHÞspg
þ 11:589ΔðnRCHOÞspn � 15:796Δ VE2_B mð Þð Þspn
� 3:587Δ Eig07_EA dmð Þð Þspn � 1:240Δ Mor11vð Þspg
� 0:074Δ T N . . . Sð Þð Þspn þ 0:110Δ F06 C � N½ �ð Þspn þ 2:874

(3)

A summary of the statistical performance of this model is given in
Table 1. As can be seen, in fact, M3p is a very balanced LDA model in
terms of its internal and external predictivity (i.e., with MCC values of
0.727, 0.739 and 0.711 against the training, test and validation sets, respec-
tively). Furthermore, M3p provides a satisfactory goodness-of-fit with a
Wilks' λ value of 0.500 (λ can take values from zero, ideal discrimination,
to one, no discrimination) while affording approximately an overall accu-
racy > 87% (Wilks, 1932). More significantly, this model delivers an accu-
racy of 86.8% for the validation set. One can also see that the model is a
truly statistically significant classifier, since the area under the ROC curve
for all sets (AUROC values in Table 1) are higher than the one of a random
classifier (AUROC = 0.5), lying all points in the upper left triangle space
(see Fig. S2) (Fawcett, 2006; Hanczar et al., 2010).

Further analysis of the M3p model should only be carried out after
checking the non-multicollinearity among its descriptors. Following the ob-
servation that the model has a maximum intercollinearity (absolute value)

https://github.com/manuel-calzolari/sklearn-genetic
https://github.com/manuel-calzolari/sklearn-genetic
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Table 1
Statistical results for the most predictive linear model M3p.a

LDA statistics Sub-training set Test set Validation set

λ = 0.500
F = 126.95
p < 10−16

TP = 813 TP = 183 TP = 421
TN = 316 TN = 97 TN = 183
FP = 121 FP = 34 FP = 70
FN = 34 FN = 7 FN = 22
Sn = 72.3 Sn = 74.0 Sn = 72.3
Sp = 96.0 Sp = 96.3 Sp = 95.0
Acc = 87.9 Acc = 87.2 Acc = 86.8
F1-score = 91.3 F1-score = 89.9 F1-score = 90.2
MCC = 0.727 MCC = 0.739 MCC = 0.711
AUROC = 0.841 AUROC = 0.852 AUROC = 0.837

a Model refined from the original linearmodelM3 found (see Table S3) by applying
the PS3M technique. The abbreviations for the statistical metrics presented are as fol-
lows: the Wilks' lambda (λ), the Fisher ratio (F) and the corresponding p-value; true
positives (TP), true negatives (TN), false positives (FP); false negatives (FN); sensitivity
(Sn); specificity (Sp); accuracy (Acc), F1-score, the Matthews correlation coefficient
(MCC), and the area under the curve for the receiver operating characteristic curve
(AUROC). The metrics Sn, Sp, Acc, and F1-score are given in percentage.

Table 2
Statistical parameters of the two most predictive non-linear models (M23 and
M26).a

Parameters M23 M26

Sub-training Test Validation Sub-training Test Validation

TP 790 184 416 801 180 396
TN 345 109 193 357 113 207
FP 92 22 60 80 18 46
FN 57 6 27 46 10 47
Sn 93.3 83.2 76.3 94.6 86.3 81.8
Sp 79.0 96.8 93.9 81.7 94.7 89.4
Acc 88.4 91.3 87.5 90.2 91.3 86.6
F1-score 91.4 92.9 90.53 92.7 92.8 89.5
MCC 0.738 0.820 0.726 0.779 0.819 0.712
AUROC – 0.900 0.851 – 0.905 0.856

a For themeaning of the statistical parameters, please check the footnotes of Table 1.
The results presented for the sub-training sets are from a 5-fold cross validation proce-
dure. The metrics Sn, Sp, Acc, and F1-score are given in percentage.
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of 0.727, meaning that its descriptors can be considered independent, the
Yc randomization test (Halder and Cordeiro, 2021a) was then performed.
The produced randomized models afforded an average Wilks' λ of 0.993
and accuracy of 65.0%,which shows that both the goodness-of-fit and accu-
racy of such models are considerably poorer than those of the original
model. The statistical uniqueness of model M3p is thereby established. Fi-
nally, the applicability domain of M3p, using the standardization approach
as suggested by Roy et al. (2015), yielded 66, 23 and 39 data-points as out-
liers for the sub-training set, test and validation sets respectively, though
most of these (120 out of 128) were found to be correctly predicted by
the model. Therefore, in order to retain the structural and experimental di-
versity in the dataset, we refrained from removing these structural outliers
and what is more, the whole dataset was subsequently used for develop-
ment of the consensus models (see below).

3.2. Non-linear MA-mtk model

Even though we found a very acceptable linear model, previous investi-
gations revealed that non-linear models generally afford predictive accura-
cies much higher than linear models, yet somehow at the expense of their
mechanistic interpretation (Halder et al., 2022a). Therefore, non-linear
models were generated by applying different advanced machine learning
techniques essentially to check how these perform compared to the pro-
posed linear model M3p. To do so, non-linear MA-mtk models were set
up by applying the six already referred ML techniques (i.e.: kNN, RF, GB,
MLP, SVC and DNN) after hyperparameter optimization, and based on
using the following:

(a) Descriptors that appear in the best linear model, i.e., the descriptors
of M3p.

(b) Descriptors selected from Differential Shannon entropy (dSe).
(c) Descriptors selected by applying the GA-kNN technique, which pro-

vided 36 descriptors (see details in Table S6) after 4 consecutive steps.
(d) All kind of descriptors obtained, after applying pre-treatment with a

variance cut-off value 0.001 and an intercorrelation cut-off of 0.95.

The predictive accuracy of these non-linear models, summarized in
Table S7, demonstrates that irrespectively of the descriptors employed for
model development, RF and GB stand out as the more successful classifiers.
Indeed, the overall predictive accuracy of the RF and GB non-linear models
steadily improved with an increasing number of descriptors. The models
generated with the descriptors of M3p (i.e., models M8-M13 in Table S7)
provided results considerably better than those developed with the same
number of descriptors selected from differential Shannon entropy. Interest-
ingly, no matter what ML tool was applied, the descriptors of M3p yielded
5

predictive models in a consistent manner, further confirming their impor-
tance in proper shaping the toxicity for diverse EDCs. However, that was
not the case for the descriptors picked by differential Shannon entropy
since the predictivity of its models varied considerably.

SVC produced a non-linearmodelwith the descriptors ofM3p (i.e., M12
in Table S7), the overall predictive accuracy of which is close to that of
M3p. Table S7 also reveals that the GA-kNN feature extraction technique
was particularly useful in extracting the most crucial descriptors for devel-
oping non-linear models. The predictive accuracy of the GA-kNN-based RF
model (i.e., M20 in Table S7) should be considered as one of the most pre-
dictive models in terms of overall accuracy. In addition, as far as the exter-
nal validation is concerned, this model depicts the highest MCC value for
the external validation set, i.e., 0.726.

Worth mentioning here is that the significant differences obtained be-
tween predictivities against two prediction sets (i.e., test and validation
sets) for models such as M20, M23, M26 and M29, indicated that with a
larger number of descriptors, the ML tools showed tendency to generate
more overfittedmodels, either based on the descriptors or themoving aver-
age technique. However, the descriptors selected by GA-kNN were able to
produce predictive models with each ML tool but that did not happen
when all descriptors were employed. For example, kNN and SVC failed to
generate predictive models with all descriptors. Nevertheless, a maximum
overall predictivity was gathered fromM26, which is a GB-basedmodel de-
rived with all descriptors. Notwithstanding, this is also one of the most
overfittedmodels, withMCC values for the sub-training set, test and valida-
tion sets of 0.779, 0.819 and 0.712, respectively. More importantly, no non-
linear model did have an external predictivity considerably higher towards
the external validation set as compared to the best linear model - i.e., to
M3p. Moreover, the latter itself provides mechanistic interpretations in a
far more straightforward way than any of these predictive non-linear
models. Yet, on the basis of the overall predictivity as well as on the predic-
tive accuracy towards the external validation set, fourmodels, namelyM20,
M23, M26 andM29were chosen for further refinement, that is, for consen-
sus prediction.

Focusing now on the other statistical parameters of the twomost predic-
tive non-linear models, i.e., M23 and M26, presented in Table 2 and with
their ROC plots shown in Fig. S3, the model M23 has accuracy values of
88.4%, 91.3% and 87.5% against the sub-training, test and validation
sets, respectively, whereas model M26 affords > 90% accuracy against
the sub-training and test sets but the accuracy of the validation set is re-
stricted to 86.6%. Another noteworthy observation is the significant differ-
ence between the sensitivity and specificity for both prediction sets of M23
and M26. However, among these three models, M26 provides much more
balanced results from this aspect, with lesser differences between the values
of false positives and false negatives. These results indicate that modelM26
may be different from the other two models and so, consensus prediction
with these models may result in higher overall predictive accuracies
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towards the prediction sets. Finally, M23 model has 75 and 166 outliers in
the test and validation set whereasM26 contained only 9 outliers in the test
set and 40 outliers in the validation sets.

3.3. Mechanistic interpretation of linear model

After confirming statistical similarity between the non-linear models
and the linear models and assuring that the former does not increase
much their predictive accuracy towards the validation set, focus is once
more on the best linear model M3p, because it affords simpler mechanistic
interpretability. In fact, an in-depth analysis of the descriptors from this lin-
ear MA-mtk QSTR model will allow to disclose the relevant features of the
EDCs molecular structure under the targeted experimental conditions that
affect their end-point toxicity. The main results of that analysis are
displayed in Table 3, per in silico result and its subsequent mechanistic in-
sight, with clarification of the industrial value implication in developing
more environmental-friendly EDCs.

The M3pmodel included ten descriptors, whose description is provided
in Table S5 and relative contributions are shown in Fig. 1, grouped by one
of three experimental elements that were considered to be important in the
beginning of the present MA-mtk QSAR modeling. The experimental ele-
ment spn, or species name, appeared in six deviation descriptors, followed
by the spg, or species group, found in three deviation descriptors. The
third experimental element co, or concentration, was found only in one de-
scriptor, namely Δ(P_VSA_LogP_4)co, which is one of the most significant
descriptors of the model (vide Fig. 1). Interestingly, the frequency at
which these experimental elements were found are proportional to their
variations in the modeling datasets.

Notwithstanding, the most significant descriptor of the model is
Δ(X2sol)spg, based on the connectivity index X2sol (Kier and Hall, 2000).
Even though this descriptor is topological in nature and computed from
H-depleted molecular graphs, it tends to explain the solvation entropy
and dispersion interactions of the compounds in solution with respect to
the topology of their structures. In this work, compounds with higher
value of Δ(X2sol)spg depicted higher environmental toxicity, as can be
inspected for example in Fig. 2 that shows six randomly selected data-
points with variations in the Δ(X2sol)spg values.

The second most significant deviation descriptor of the model is
Δ(P_VSA_LogP_4)co, which is based on the descriptor P_VSA_LogP_4 rep-
resenting the P_VSA-like descriptor on LogP with bin 4 (Labute, 2000;
Chavan et al., 2014). In fact, this descriptor tends to project the van
der Waals surface area of compounds, estimated with the help of atomic
lipophilicity (or LogP values), in a specific topological range (4 in this
instance) specified in the connection table (Labute, 2000). Here, a low
value of Δ(P_VSA_LogP_4)co was found in the compounds with high tox-
icity, as depicted in Fig. 3 for some typical examples. From the latter, it
can be observed that compounds with low Δ(P_VSA_LogP_4)co values or
with high toxicity comprise a greater number of non-polar atoms
compared to those with low Δ(P_VSA_LogP_4)co values (or with low
toxicity).

The 2D-matrix descriptor VE2_B(m) follows as the thirdmost influential
deviation descriptor of the model, though it was found as significant as
Δ(P_VSA_LogP_4)co since both have highly similar absolute standardized
coefficients and are negatively correlated to the response variable. VE2_B
(m) means the average coefficient of the last eigenvector (absolute values)
calculated with the Burden matrix weighted by atomic masses (Todeschini
and Consonni, 2009). Being a topological descriptor based on the
2D-adjacency matrix, this descriptor is less prone to mechanistic interpret-
ability though it points out the importance of specific topological contribu-
tions of the chemicals towards higher toxicity along with the masses (m) of
their atoms. Fig. 4 depicts some toxic data-points (with lowΔ(VE2_B(m))spn
values) along with a few non-toxic data-points (with high Δ(VE2_B(m))spn
values). It may readily be understood from this figure that molecular
mass plays an important role in determining Δ(VE2_B(m))spn since com-
pounds with low molecular mass possess higher values for this deviation
descriptor.



Fig. 1. Relative importance of the descriptors appearing in the linear model M3p.

A.K. Halder et al. Science of the Total Environment 889 (2023) 164337
Unlike the former descriptor, the present model includes some descrip-
tors that are comparatively easier to interpret (Todeschini and Consonni,
2009). For example, Δ(nArOH)spg and Δ(nRCHO)spn are two of such de-
scriptors. Being positively correlated with the toxicity, these descriptors
highlight the importance of aromatic hydroxyl and aliphatic aldehyde
groups for inducing higher environmental toxicity of the EDCs. In Fig. S4,
some compounds with high values of Δ(nArOH)spg or Δ(nRCHO)spn are
Fig. 2. Typical examples taken from the current dataset with varying values of Δ

7

shown. Irrespective of the experimental conditions, these compounds con-
sistently exhibit high environmental toxicity.

In addition, the model contains another topological descriptor, namely
Δ(Eig07_EA(dm))spn, that shows that physicochemical properties like the
atomic dipole moments (dm) play a negative role in sparking the environ-
mental toxicity of EDCs. The only 3D-based descriptors in this model are
Δ(Mor11v)spn and Δ(R5m+)spg, which also illustrate that physicochemical
(X2sol)spg, which is the most significant descriptor of the linear model M3p.



Fig. 3. Typical examples taken from the current dataset with varying values of Δ(P_VSA_LogP_4)co, which is the second most significant descriptor of the linear model M3p.

Fig. 4. Typical examples taken from the current dataset with varying values of Δ(VE2_B(m))spn, which is the third most significant descriptor of the linear model M3p.

A.K. Halder et al. Science of the Total Environment 889 (2023) 164337
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Table 4
Statistical parameters of the models obtained from the most predictive consensus
model CM3.a

Parameters Test set Validation set

TP 184 418
TN 111 197
FP 20 56
FN 6 25
Sn 84.7 77.9
Sp 96.8 94.4
Acc 91.9 88.4
F1-score 93.4 91.2
MCC 0.833 0.745
AUROC score 0.908 0.861

a For the meaning of the statistical parameters, please check the footnotes of
Table 1. The metrics Sn, Sp, Acc, and F1-score are given in percentage.
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properties such as the atomic van der Waal volumes and masses trigger ei-
ther negatively (v) or positively (m) the environmental toxicity of EDCs.
The Mor11v belongs to the 3D-Morse descriptors that are computed from
equations based on electron diffraction studies and so, these descriptors
are highly dependent on the 3D geometry of the compounds (Schuur
et al., 1996; Devinyak et al., 2014). Similarly, R5m+ belongs to the R-
type GEometry, Topology, and Atom-Weights AssemblY (GETAWAY) de-
scriptors, which are based on the molecular influence matrix (MIM)
(Consonni et al., 2002), being the latter employed as molecular representa-
tion computed from the spatial coordinates of the molecule atoms in a cho-
sen conformation. The R-GETAWAY descriptors particularly are derived by
combining the MIM information with the geometric interatomic distances
in themolecule, being therefore able of differentiating closely related struc-
tures with the help of the 3D-shape of molecules.

The remaining descriptors contributing to thismodel are the 2D atompair
descriptors T(N…S) and F06[C-N] (Todeschini and Consonni, 2009) The T
(N…S) descriptor stands for the sum of topological distances between nitro-
gen (N) and sulfur (S) atoms. Finally, F06[C-N] is another descriptor that em-
phasizes the importance of the frequency of carbon and nitrogen separated at
a topological distance of 7. A higher value of this parameter was observed in
the compounds exhibiting high toxicity to various environmental species.

3.4. Consensus modeling approach

Recently consensus in silicomodeling drew considerable attention since
one single model may not be able to provide maximum predictivity for any
given dataset. When the predictions of multiple models are combined,
higher predictivity may be achieved. In fact, Roy et al. recently developed
the idea of intelligent consensus prediction for multilinear regression
models (Roy et al., 2018). Furthermore, consensus modeling may also
help in widening the applicability domain of the models. Also recently,
Valsecchi et al. proposed different consensus modeling approaches, such
as majority voting and the Bayes consensus with discrete probability distri-
butions, to improve the predictive accuracy of classification models
(Valsecchi et al., 2020). Even if the consensus prediction does not assist
much in improving the predictivity to a considerable extent regarding the
individual models, such predictions may at least justify that maximum
predictivity has been achieved by those individual models, which in turn
may improve the reliability towards proposing the best individual models,
as well as the methodology adopted to set up the latter.

In the present work, the simplest of the rationales was employed for de-
veloping consensus models from the most predictive linear and non-linear
models. Basically, consensus modeling was applied for the following
three different groups:

(i) Linear models - The top five linear models were chosen based on hav-
ing an average MCC score greater than 0.70, i.e.: M3p, M2p, M7p, M2
and M6. The latter yielded a total of 26 combinations that were sub-
jected to consensus prediction.

(ii) Non-linear models - The top four non-linear models were chosen,
namely:M20,M23,M26 andM29, for testing a total of 11 combinations.

(iii) Linear and non-linear models - The top two linear and non-linear models
were selected, i.e.: M3p, M2p, M20 and M26, resulting in a total of 11
combinations.

The best results obtained for each group are summarized in Table S8. As
can be seen, themost promisingmodelwas achievedwhen the linearmodel
M3p was combined with the non-linear models M23 and M26. The varia-
tions observed in the MCC values for the two prediction sets of the third
group consensus models are shown in Fig. S5. The predictive accuracy of
the best consensus model found (i.e.: CM3) was slightly improved when
compared to most individual models, especially for the external validation
set. In fact, model CM3 afforded an accuracy of 88.4%with aMCC of 0.745
for the validation set. The other statistical parameters for thismodel regard-
ing the test set are given in Table 4. This model highlights the significance
of the most predictive linear model found, i.e.: M3p. Similarly, M23 and
9

M26 pertain also to the most predictive non-linear models developed in
this work. What is more, since the consensus model fails to improve the ex-
ternal predictivity to a large extent, the individual linear and non-linear
models proposed in this work reached almost a maximum predictivity
with the current set of descriptors. For example, compared to M3p, CM3
provides less than 2% improvement in the predictive accuracy towards
the external validation set. Therefore, it can be concluded that the linear
model M3p can be used for predicting the ecotoxicity for novel structures.
However, for slightly higher predictive accuracy, one might resource to
the consensus model CM3.

4. Conclusions

Exploring MA-mtk in silico modeling techniques to develop global
models for ecotoxicity prediction of EDC towards a large number of biologi-
cal species of various species groups was the main objective of this work. Re-
cent years have witnessed the emergence of moving average-based
multitasking modeling as a useful strategy for developing mtk-QSTR models
due to its simplicity and ability to jointly predict outcomes against multiple
experimental conditions. As many as 2,301 data-points with high structural
and experimental diversity were used to set up linear and non-linear models,
using various advanced machine learning tools. Overall, the most predictive
linear mtk-QSTR model afforded an overall accuracy of 87%, with the re-
cently proposed PS3M feature selection technique playing a crucial role in
finding this ten-descriptor model from a large number of deviation descrip-
tors. The obtained results thus emphasize the significance of the linear
model both as a predictive QSTR model as well as a model that highlights
crucial structural attributes responsible for higher toxicity. Consensusmodels
were also generated and helped improve the predictive accuracy towards ex-
ternal validation sets. Presence of number of fragments such as aromatic hy-
droxyl and aliphatic aldehyde, solvation, van der Waals volumes, atomic
dipole moments plus masses, along with the distance between nitrogen-
sulfur and carbon-nitrogen were found to be determining factors for eliciting
higher ecotoxicity by the EDCs towards different biological species. Addition-
ally, it was revealed that the specific 2D- and 3D-geometry of these chemical
compounds are also responsible for their toxicological nature.

Finally, all models were developed and validated using non-commercial
open-access tools such as the second version of the QSAR-Co-X tool (avail-
able at https://github.com/ncordeirfcup/QSAR-Co-X_v2), which now in-
cludes the newly introduced consensus prediction method. The latter are
thus easily reproducible by the end-users and may be used for library
screening to speed up regulatory decision for gathering safe alternatives
that will reduce the hazards of EDCs.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.164337.

CRediT authorship contribution statement

Amit Kumar Halder: Conceptualization, Methodology, Formal
analysis, Software, Investigation, Visualization, Writing - Original draft

https://github.com/ncordeirfcup/QSAR-Co-X_v2
https://doi.org/10.1016/j.scitotenv.2023.164337
https://doi.org/10.1016/j.scitotenv.2023.164337


A.K. Halder et al. Science of the Total Environment 889 (2023) 164337
preparation. Ana S Moura: Investigation, Writing - Reviewing & Editing.
Maria Natalia D. S. Cordeiro: Investigation, Writing - Reviewing &
Editing, Supervision, Funding acquisition. All authors discussed the results
and commented on themanuscript. All authors read and approved the final
manuscript.

Data availability

Data are available as supplementary materials or in Github links provided
in the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgements

This work was supported by UIDB/50006/2020 with funding
from FCT/MCTES through national funds. The authors are thankful to
ChemAxon for providing the academic license of Standardizer. Ana S.
Moura further acknowledges FCT/MECS for the contract IF CEECIND/
03631/2017.

References

Ambure, P., Bhat, J., Puzyn, T., Roy, K., 2018. Identifying natural compounds as multi-target-
directed ligands against Alzheimer’s disease: an in silico approach. J. Biomol. Struct. Dyn.
37, 1282–1306. https://doi.org/10.1080/07391102.2018.1456975.

Ambure, P., Halder, A.K., Gonzalez-Diaz, H., Cordeiro, M.N.D.S., 2019. QSAR-Co: an open source
software for developing robust multitasking or multitarget classification-based QSAR
models. J. Chem. Inf. Model. 59, 2538–2544. https://doi.org/10.1021/acs.jcim.9b00295.

BIOVIA, 2021. Dassault Systèmes, Discovery Studio Visualizer 2021 Client. Dassault
Systèmes, San Diego.

Boser, B.E., et al., 1992. A training algorithm for optimal margin classifiers. Proceedings of the
Fifth Annual Workshop on Computational Learning Theory ACM 144–152, Pittsburgh,
PA, USA, 27–29 July.

Boughorbel, S., Jarray, F., El-Anbari, M., 2017. Optimal classifier for imbalanced data using
Matthews Correlation Coefficient metric. PLoS One 12, e0177678. https://doi.org/10.
1371/journal.pone.0177678.

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M., 2015. Time series analysis: forecasting
and control. Wiley Series in Probability and Statistics, 5th ed. ISBN: 978-1-118-67491-8.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:
1010933404324.

Chavan, S., Nicholls, I.A., Karlsson, C.G., Rosengren, A.M., Ballabio, D., Consonni, V., 2014.
Towards global QSAR model building for acute toxicity: Munro Database case study.
Int. J. Mol. Sci. 15, 18162–18174. https://doi.org/10.3390/ijms151018162.

Consonni, V., Todeschini, R., Pavan, M., 2002. Structure/response correlations and similarity/
diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3Dmolecular descrip-
tors. J. Chem. Inf. Comput. Sci. 42, 682–692. https://doi.org/10.1021/ci015504a.

Cover, T., Hart, P., 1967. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13,
21–27. https://doi.org/10.1109/tit.1967.1053964.

Cumming, J.G., Davis, A.M., Muresan, S., Haeberlein, M., Chen, H., 2013. Chemical predictive
modelling to improve compound quality. Nat. Rev. Drug Discov. 12, 948–962. https://
doi.org/10.1038/nrd4128.

De Coster, S., van Larebeke, N., 2012. Endocrine-disrupting chemicals: associated disorders
and mechanisms of action. J. Environ. Public Health 2012, 1–52. https://doi.org/10.
1155/2012/713696.

Devinyak, O., Havrylyuk, D., Lesykb, R., 2014. 3D-MoRSE descriptors explained. J. Mol.
Graphics Model. 54, 194–203. https://doi.org/10.1016/j.jmgm.2014.10.006.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874.
https://doi.org/10.1016/j.patrec.2005.10.010.

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29. https://doi.org/10.1214/aos/1013203451.

Globally Harmonized System of Classification and Labelling of Chemicals (GHS) 9th revised
edition. United Nations, New York and Geneva. https://unece.org/sites/default/files/
2021-09/GHS_Rev9E_0.pdf.

Gore Jr., P.A., 2000. Cluster analysis. In: Tinsley, H.E.A., Brown, S.D. (Eds.), Handbook of Ap-
plied Multivariate Statistics and Mathematical Modeling. Academic Press, pp. 297–321
https://doi.org/10.1016/B978-012691360-6/50012-4.

Guang-Bin, H., Babri, H.A., 1998. Upper bounds on the number of hidden neurons in
feedforward networks with arbitrary bounded nonlinear activation functions. IEEE
Trans. Neural Net. 9, 224–229. https://doi.org/10.1109/72.655045.

Gunturi, S.B., Theerthala, S.S., Patel, N.K., Bahl, J., Narayanan, R., 2010. Prediction of skin
sensitization potential using D-optimal design and GA-kNN classification methods. SAR
QSAR Environ. Res. 21, 305–335. https://doi.org/10.1080/10629361003773955.
10
Halder, A.K., Cordeiro, M.N.D.S., 2019. Development of multi-target chemometric models for
the inhibition of class i pi3k enzyme isoforms: A case study using QSAR-Co tool. Int.
J. Mol. Sci. 20, 4191. https://doi.org/10.3390/ijms20174191.

Halder, A.K., Cordeiro, M.N.D.S., 2021a. QSAR-Co-X: an open source toolkit for multitarget
QSAR modelling. J. Cheminform. 13, 29. https://doi.org/10.1186/s13321-021-00508-0.

Halder, A.K., Cordeiro, M.N.D.S., 2021b. Multi-target in silico prediction of inhibitors for
mitogen-activated protein kinase-interacting kinases. Biomolecules 11, 1670. https://
doi.org/10.3390/biom11111670.

Halder, A.K., Moura, A.S., Cordeiro, M.N.D.S., 2022a. Moving average-based multitasking in
silico classification modeling: where do we stand and what is next? Int. J. Mol. Sci. 23,
4937. https://doi.org/10.3390/ijms23094937.

Halder, A.K., Delgado, A.H.S., Cordeiro, M.N.D.S., 2022b. First multi-target QSAR model for
predicting the cytotoxicity of acrylic acid-based dental monomers. Dent. Mat. 38,
333–346. https://doi.org/10.1016/j.dental.2021.12.014.

Hanczar, B., Hua, J., Sima, C., Weinstein, J., Bittner, M., Doughterty, E.R., 2010. Small-sample
precision of ROC-related estimates. Bioinformatics. 26, 822–830. https://doi.org/10.
1093/bioinformatics/btq037.

He, J., Peng, T., Yang, X., Liua, H., 2018. Development of QSAR models for predicting the
binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor.
Ecotoxicol. Environ. Saf. 148, 211–219. https://doi.org/10.1016/j.ecoenv.2017.10.023.

Heo, S., Safder, U., Yoo, C., 2019. Deep learning driven QSAR model for environmental toxi-
cology: Effects of endocrine disrupting chemicals on human health. Environ. Pollut. 253,
29–38. https://doi.org/10.1016/j.envpol.2019.06.081.

Khan, K., Roy, K., Benfeneti, E., 2019. Ecotoxicological QSARmodeling of endocrine disruptor
chemicals. J. Hazard. Mater. 369, 707–718. https://doi.org/10.1016/j.jhazmat.2019.02.
019.

Kier, L.B., Hall, L.H., 2000. Intermolecular accessibility: The meaning of molecular connectiv-
ity. J. Chem. Inf. Comput. Sci. 40, 792–795. https://doi.org/10.1021/ci990135s.

Kleandrova, V.V., Scotti, L., Bezerra Mendonça Junior, F.J., Muratov, E., Scotti, M.T., Speck-
Planche, A., 2021. QSAR modeling for multi-target drug discovery: Designing simulta-
neous inhibitors of proteins in diverse pathogenic parasites. Front. Chem. 9. https://
doi.org/10.3389/fchem.2021.634663.

Kumar, M., Sarma, D.K., Shubham, S., Kumawat, M., Verma, V., Prakash, A., et al., 2020. En-
vironmental endocrine-disrupting chemical exposure: role in non-communicable dis-
eases. Front. Public Health 8, 553850. https://doi.org/10.3389/fpubh.2020.553850.

Labute, P., 2000. A widely applicable set of descriptors. J. Mol. Graphics Model. 18, 464–477.
https://doi.org/10.1016/s1093-3263(00)00068-1.

Lauretta, R., Sansone, A., Sansone, M., Romanelli, F., Appetecchia, M., 2019. Endocrine
disrupting chemicals: effects on endocrine glands. Front. Endocrinol. 10, 178. https://
doi.org/10.3389/fendo.2019.00178.

Marty, S., 2014. Introduction to “Screening for endocrine activity-experiences with the US
EPA’s endocrine disruptor screening program and future considerations”. Birth Defects
Res. B Dev. Reprod. Toxicol. 101, 1–2. https://doi.org/10.1002/bdrb.21100.

Mauri, A., Consonni, V., Pavan, M., Todeschini, T., 2006. Dragon software: An easy approach
to molecular descriptor calculations. Match-Commun. Math. Co. 56, 237–248.

Muratov, E.N., Bajorath, J., Sheridan, R.P., Tetko, I.V., Filimonov, D., Poroikov, V., et al.,
2020. QSAR without borders. Chem. Soc. Rev. 49, 3525–3564. https://doi.org/10.
1039/d0cs00098a.

Roy, K., Kar, S., Ambure, P., 2015. On a simple approach for determining applicability domain
of QSAR models. Chemom. Intell. Lab. Syst. 145, 22–29. https://doi.org/10.1016/j.
chemolab.2015.04.013.

Roy, K., Ambure, P., Kar, S., Ojha, P.K., 2018. Is it possible to improve the quality of predic-
tions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J. Chemom. 32,
e2992. https://doi.org/10.1002/cem.2992.

Sadowski, J., Gasteiger, J., Klebe, G., 2002. Comparison of automatic three-dimensional
model builders using 639 X-ray structures. J. Chem. Inf. Comput. Sci. 34, 1000–1008.
https://doi.org/10.1021/ci00020a039.

Schug, T.T., Janesick, A., Blumberg, B., Heindel, J.J., 2011. Endocrine disrupting chemicals
and disease susceptibility. J. Steroid Biochem. Mol. Biol. 127, 204–215. https://doi.
org/10.1016/j.jsbmb.2011.08.007.

Schuur, J., Selzer, P., Gasteiger, J., 1996. The coding of the three-dimensional structure of
molecules by molecular transforms and its application to structure-spectra correlations
and studies of biological activity. J. Chem. Inf. Comput. Sci. 36, 334–344. https://doi.
org/10.1021/ci950164c.

Sheffield, T.Y., Judson, R.S., 2019. Ensemble QSAR modeling to predict multispecies fish tox-
icity lethal concentrations and points of departure. Environ. Sci. Technol. 53,
12793–12802. https://doi.org/10.1021/acs.est.9b03957.

Sosnin, S., Karlov, D., Tetko, I.V., Fedorov, M.V., 2018. Comparative study of multitask toxic-
ity modeling on a broad chemical space. J. Chem. Inf. Model. 59, 1062–1072. https://doi.
org/10.1021/acs.jcim.8b00685.

Speck-Planche, A., 2020. Multi-scale QSAR approach for simultaneous modeling of ecotoxic
effects of pesticides. In: Roy, K. (Ed.), Ecotoxicological QSARs, Methods in Pharmacology
and Toxicology. Humana, New York, NY, pp. 639–660.

Speck-Planche, A., Cordeiro, M.N.D.S., 2015. Multitasking models for quantitative structure–
biological effect relationships: current status and future perspectives to speed up drug dis-
covery. Expert Opin. Drug Discov. 10, 245–256. https://doi.org/10.1517/17460441.
2015.1006195.

Speck-Planche, A., Cordeiro, M.N.D.S., 2017. Advanced In silico approaches for drug
discovery: Mining information from multiple biological and chemical data through
mtk-QSBER and pt-QSPR strategies. Curr. Med. 24, 1–18. https://doi.org/10.2174/
0929867324666170124152746.

Standardizer, 2010. Version 15.9.14.0 Software. ChemAxon, Budapest, Hungary.
Sushko, I., Novotarskyi, S., Korner, R., Pandey, A.K., Rupp, M., Teetz, W., et al., 2021. Online

chemical modeling environment (OCHEM): web platform for data storage, model devel-
opment and publishing of chemical information. J. Comput. Aided Mol. Des. 25,
533–554. https://doi.org/10.1007/s10822-011-9440-2.

https://doi.org/10.1080/07391102.2018.1456975
https://doi.org/10.1021/acs.jcim.9b00295
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0015
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0015
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0020
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0020
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0020
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0030
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0030
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/ijms151018162
https://doi.org/10.1021/ci015504a
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1038/nrd4128
https://doi.org/10.1038/nrd4128
https://doi.org/10.1155/2012/713696
https://doi.org/10.1155/2012/713696
https://doi.org/10.1016/j.jmgm.2014.10.006
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1214/aos/1013203451
https://unece.org/sites/default/files/2021-09/GHS_Rev9E_0.pdf
https://unece.org/sites/default/files/2021-09/GHS_Rev9E_0.pdf
https://doi.org/10.1016/B978-012691360-6/50012-4
https://doi.org/10.1109/72.655045
https://doi.org/10.1080/10629361003773955
https://doi.org/10.3390/ijms20174191
https://doi.org/10.1186/s13321-021-00508-0
https://doi.org/10.3390/biom11111670
https://doi.org/10.3390/biom11111670
https://doi.org/10.3390/ijms23094937
https://doi.org/10.1016/j.dental.2021.12.014
https://doi.org/10.1093/bioinformatics/btq037
https://doi.org/10.1093/bioinformatics/btq037
https://doi.org/10.1016/j.ecoenv.2017.10.023
https://doi.org/10.1016/j.envpol.2019.06.081
https://doi.org/10.1016/j.jhazmat.2019.02.019
https://doi.org/10.1016/j.jhazmat.2019.02.019
https://doi.org/10.1021/ci990135s
https://doi.org/10.3389/fchem.2021.634663
https://doi.org/10.3389/fchem.2021.634663
https://doi.org/10.3389/fpubh.2020.553850
https://doi.org/10.1016/s1093-3263(00)00068-1
https://doi.org/10.3389/fendo.2019.00178
https://doi.org/10.3389/fendo.2019.00178
https://doi.org/10.1002/bdrb.21100
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0175
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0175
https://doi.org/10.1039/d0cs00098a
https://doi.org/10.1039/d0cs00098a
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.1002/cem.2992
https://doi.org/10.1021/ci00020a039
https://doi.org/10.1016/j.jsbmb.2011.08.007
https://doi.org/10.1016/j.jsbmb.2011.08.007
https://doi.org/10.1021/ci950164c
https://doi.org/10.1021/ci950164c
https://doi.org/10.1021/acs.est.9b03957
https://doi.org/10.1021/acs.jcim.8b00685
https://doi.org/10.1021/acs.jcim.8b00685
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0220
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0220
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0220
https://doi.org/10.1517/17460441.2015.1006195
https://doi.org/10.1517/17460441.2015.1006195
https://doi.org/10.2174/0929867324666170124152746
https://doi.org/10.2174/0929867324666170124152746
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0235
https://doi.org/10.1007/s10822-011-9440-2


A.K. Halder et al. Science of the Total Environment 889 (2023) 164337
Tinsley, H.E.A., Brown, S.D., 2000. Handbook of Applied Multivariate Statistics and Mathe-
matical Modeling. Academic Press, San Diego, pp. 209–235.

Todeschini, R., Consonni, V., 2009. Molecular Descriptors for Chemoinformatics. 2nd ed.
Wiley-VCH, Weinheim, Germany.

Toropova, A.P., Toropov, A.A., Benfenati, E., 2015. CORAL: Prediction of binding affinity and
efficacy of thyroid hormone receptor ligands. Eur. J. Med. Chem. 101, 452–461. https://
doi.org/10.1016/j.ejmech.2015.07.012.

Urias, R.W., Barigye, S.J., Marrero-Ponce, Y., Garcia-Jacas, C.R., Valdes-Martini, J.R., Perez-
Gimenez, F., 2015. IMMAN: Free software for information theory-based chemometric
analysis. Mol. Divers. 19, 305–319. https://doi.org/10.1007/s11030-014-9565-z.

Vafeiadi, M., Georgiou, V., Chalkiadaki, G., Rantakokko, P., Kiviranta, H., Karachaliou, M., et
al., 2015. Association of prenatal exposure to persistent organic pollutants with obesity
and cardiometabolic traits in early childhood: The Rhea Mother–Child Cohort (Crete,
Greece). Environ. Health Perspect. 123, 1015–1021. https://doi.org/10.1289/ehp.
1409062.
11
Valsecchi, C., Grisoni, F., Consonni, V., Ballabio, D., 2020. Consensus versus individual QSARs
in classification: Comparison on a large-scale case study. J. Chem. Inf. Model. 60,
1215–1223. https://doi.org/10.1021/acs.jcim.9b01057.

Velmurugan, G., Ramprasath, T., Gilles, M., Swaminathan, K., Ramasamy, S., 2017.
Endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol. Metab.
28, 612–625. https://doi.org/10.1016/j.tem.2017.05.001.

Weininger, D., 1988. SMILES, a chemical language and information system: 1: Introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36. https://doi.org/
10.1021/ci00057a005.

Wilks, S.S., 1932. Certain generalizations in the analysis of variance. Biometrika. 24,
471–494. https://doi.org/10.1093/biomet/24.3-4.471.

http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0245
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0245
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0250
http://refhub.elsevier.com/S0048-9697(23)02958-3/rf0250
https://doi.org/10.1016/j.ejmech.2015.07.012
https://doi.org/10.1016/j.ejmech.2015.07.012
https://doi.org/10.1007/s11030-014-9565-z
https://doi.org/10.1289/ehp.1409062
https://doi.org/10.1289/ehp.1409062
https://doi.org/10.1021/acs.jcim.9b01057
https://doi.org/10.1016/j.tem.2017.05.001
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1093/biomet/24.3-4.471

	Predicting the ecotoxicity of endocrine disruptive chemicals: Multitasking in silico approaches towards global models
	1. Introduction
	2. Materials and methods
	2.1. Dataset collection, curation and descriptor calculation
	2.2. Dataset division and descriptor pre-treatment
	2.3. Linear model development
	2.4. Non-linear model development
	2.5. Model evaluation
	2.6. Consensus modeling

	3. Results and discussion
	3.1. Linear MA-mtk model
	3.2. Non-linear MA-mtk model
	3.3. Mechanistic interpretation of linear model
	3.4. Consensus modeling approach

	4. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References




