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A B S T R A C T   

Non-alcoholic fatty liver disease (NAFLD) is a pathological condition which is strongly correlated with fat 
accumulation in the liver that has become a major health hazard globally. So far, limited treatment options are 
available for the management of NAFLD and partial agonism of Farnesoid X receptor (FXR) has proven to be one 
of the most promising strategies for treatment of NAFLD. In present work, a range of validated predictive 
cheminformatics and molecular modeling studies were performed with a series of 3-benzamidobenzoic acid 
derivatives in order to recognize their structural requirements for possessing higher potency towards FXR. 2D- 
QSAR models were able to extract the most significant structural attributes determining the higher activity to-
wards the receptor. Ligand-based pharmacophore model was created with a novel and less-explored open access 
tool named QPhAR to acquire information regarding important 3D-pharmacophoric features that lead to higher 
agonistic potential towards the FXR. The alignment of the dataset compounds based on pharmacophore mapping 
led to 3D-QSAR models that pointed out the most crucial steric and electrostatic influence. Molecular dynamics 
(MD) simulation performed with the most potent and the least potent derivatives of the current dataset helped us 
to understand how to link the structural interpretations obtained from 2D-QSAR, 3D-QSAR and pharmacophore 
models with the involvement of specific amino acid residues in the FXR protein. The current study revealed that 
hydrogen bond interactions with carboxylate group of the ligands play an important role in the ligand receptor 
binding but higher stabilization of different helices close to the binding site of FXR (e.g., H5, H6 and H8) through 
aromatic scaffolds of the ligands should lead to higher activity for these ligands. The present work affords 
important guidelines towards designing novel FXR partial agonists for new therapeutic options in the manage-
ment of NAFLD. Moreover, we relied mainly on open-access tools to develop the in-silico models in order to 
ensure their reproducibility as well as utilization.   

1. Introduction 

Non-alcoholic fatty liver disease (NAFLD) has become one the most 
common manifestations of chronic liver diseases in the last decade or so 
in the global population. The concern regarding the disease has multi-
plied many folds due to its disruption of different extra-hepatic systems 
and not only confining itself to metabolic disorders [1,2]. Non-alcoholic 
fatty liver is a pathological condition which is strongly correlated with 
fat accumulation in the liver with presence of >5% steatosis of 

hepatocytes and has been well established as one of the major reasons 
for morbidity and mortality in 1/4th of the global adult population [3, 
4]. Disease progression of NAFLD has been perceived in two stages: 
firstly the benign non-alcoholic fatty liver and then its more aggressive 
form, namely non-alcoholic steatohepatitis (NASH) [5]. NASH is 
considered to be the progressed stage in fatty liver disease, which is 
characterized by excessive steatosis, hepatocytic enlargement with 
rarefied cytoplasm (hepatocytic ballooning) and fibrosis [6,7]. NASH is 
capable of advancing to stages of hepatic diseases, namely cirrhosis of 
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liver and hepatocellular carcinoma that has shown high prevalence in 
population with other complicated metabolic disorders [8]. The un-
derlying etiology behind development of NAFLD is associated with 
obesity and insulin resistance which make it a close accomplice to type 2 
diabetes mellitus (T2DM) among others. The intertwining relation be-
tween T2DM and NAFLD is often complex as T2DM can severely 
accelerate the disease complications like cirrhosis, hepatocellular car-
cinoma of NASH [9,10]. 

The underlying pathophysiology of the disease is often associated 
with uncontrolled lipid supply from gut to liver due to uninhibited di-
etary intake or dysregulated microbiota of the gut, escalated free fatty 
acid influx from the white adipose tissue and elevated lipogenesis [11]. 
Patients with early stages of NAFLD are often recommended lifestyle 
modifications involved with calorie restriction and increased physical 
activity. Loss in weight may help individuals with early stage compli-
cations, but targeted therapeutic approach may be useful against NAFLD 
in advanced stages. The major therapeutic approaches include use of 
peroxisome proliferator-activator receptors (PPARs) agonists, lipid 
lowering agents, incretin-based therapies, agents acting on inflamma-
tion, antioxidants and farnesoid X receptor (FXR) agonists [12]. 

Farnesoid X receptor (FXR) is a nuclear receptor transcription factor 
which plays an important role in maintaining bile acid homeostasis in 
the liver by downregulation of the bile acid synthesis and reduced 
gluconeogenesis as well as lipogenesis [13]. FXR agonists have become 
one of the most sought-after therapeutic approaches in management of 
NAFLD/NASH after its synthetic agonist Obeticholic acid (OCA) had 
produced promising results in clinical investigations [14]. OCA is the 
synthetic analogue of the naturally occurring FXR agonist chenodeox-
ycholic acid (CDCA), and it has been identified as a lead compound due 
to its effect on improving insulin resistance in T2DM and its anti-fibrotic 
potential [15,16]. The effects exerted by FXR agonism have been 
derived from its multifaceted effects in genetic regulation which are 
predominant in bile acid axis for regulation of metabolic disorders. 
However, in a recently completed study, the effect of OCA in the treat-
ment of NAFLD through activation of FXR has come under radar due to 
its adverse effect of causing hepatic injury by cholesterol accumulation 
and interleukin - 1β pathway [17]. Overactivation of FXR receptors has 
proven to diminish CYP7A1 gene expression, which is responsible for 
the synthesis of cholesterol 7α-hydroxylase, an enzyme, effective in 
activating cholesterol metabolism and synthesis of bile acids [18–20]. In 
fact, the United States Food and Drug Administration (USFDA) recently 
restricted the use of OCA in patients suffering from primary biliary 
cholangitis and advanced cirrhosis due to the fact that its administration 
may lead to severe hepatotoxicity and liver failure [21]. This has led 
researchers to look into partial FXR agonists as potential therapeutic 
agents in the management of NAFLD/NASH. 

A recent investigation by Hu et al. on novel 3-benzamidobenzoic acid 
derivatives as partial FXR agonists has established potential of the 
synthesized molecules in combatting NAFLD/NASH [22]. The com-
pounds were synthesized on the basis of their interaction between the 
phenoxyphenyl moiety in the large hydrophobic cavity and potency of 
the synthesized compounds was expressed in 50% effective concentra-
tion (EC50) by the Lanthascreen™ Time-Resolved Fluorescence reso-
nance energy transfer (TR-FRET) assay and indicated activity range 
between 5.5 and 7.6 μM. The highest active compound was subjected to 
in vivo assay in acetaminophen (APAP) induced hepatotoxic animals and 
showed satisfactory results. The structure activity relationship (SAR) 
study conducted by Hu et al. also revealed the effect of biphenyl moiety 
in binding to the hydrophobic pocket of the receptor [22]. A further in 
silico study needs to be carried out to interpret the effects of different 
structural features on their activity. In the present work, we employed a 
range of in silico modeling tools to characterize the biological activity 
variations observed in these recently developed 3-benzamidobenzoic 
acid derivatives in a bid to facilitate further development of FXR par-
tial agonists in near future. Starting with a 2D-quantitative structure 
activity relationship (2D-QSAR) modeling analysis, the latter was 

followed by pharmacophore mapping, 3D-QSAR modeling, molecular 
docking and molecular dynamics (MD) simulation analyses. 

2. Materials and methods 

2.1. Dataset collection and preparation 

In a recently published study, Hu et al. reported 35 novel 3-benzami-
dobenzoic acid derivatives as partial FXR agonists [22]. The activity of 
the compounds was checked by TR-FRET assay for their potential in the 
treatment of NAFLD/NASH. The 50% effective concentration (EC50) of 
the synthesized compounds were collected and converted to pEC50 (=
− log10(EC50/106)) and subsequently, used as response variables for 
development of the 2D and 3D QSAR models. The structures and bio-
logical activity of the 35 compounds are supplied in the supplementary 
data (Table S1). The SMILES provided by the group were converted to . 
sdf files by Discovery Studio Visualization tool and then numbered 
accordingly. Standardization of the structures were performed by 
Chemaxon Standardizer tool through the following steps: (a) addition of 
explicit hydrogen atoms, (b) aromatization, (c) clean 2D, (d) clean 3D, 
(e) neutralize and (f) strip salts. After standardization of the structures, 
these were submitted to 2D and 3D QSAR modeling analysis efforts [23]. 

2.2. 2D-QSAR modeling 

2.2.1. Descriptor calculation 
Descriptor calculation of the thirty-five 3-benzamidobenzoic acid 

derivatives was carried out by the OCHEM webserver-based AlvaDesc 
v.2.0.4 (https://www.alvascience.com/alvadesc/) module [24,25]. The 
Corina tool was employed for geometry optimization of the 3D struc-
tures of the compounds [26]. The pEC50 values of the compounds were 
incorporated with the calculated descriptors to obtain the final dataset 
for 2D-QSAR model development. 

2.2.2. Dataset division and model development 
The entire dataset was divided into a training set and a test set by the 

help of Python coded open-access tool SFS-QSAR (https://github. 
com/ncordeirfcup/SFS-QSAR-tool) and the dataset division per se was 
made with the activity sorting method taking 2 as the starting point 
[27]. The 2D QSAR modeling was completed in two stages. In the first 
stage, only descriptors with better interpretability were utilized for the 
development of the model. The latter included constitutional de-
scriptors, functional group counts, 2D-atom pairs, drug-like indices, ring 
descriptors, atom-centered fragments, pharmacophore descriptors and 
molecular properties. In the second stage, all AlvaDesc descriptors were 
deployed for the model development to check how much improvement 
in the model quality was achieved as compared to the model generated 
with interpretable descriptors. The models were developed by applying 
two feature selection techniques, namely: (a) the sequential forward 
selection (SFS) and (b) the genetic algorithm (GA). The SFS based 
feature selection method resources to the open-access tool SFS-QSAR 
(https://github.com/ncordeirfcup/SFS-QSAR-tool), which utilizes the 
‘Feature Selector’ module of the Mlxtend library (http://rasbt.github.io 
/mlxtend/) [25]. The variance cut-off was set at 0.0001 to remove 
constant and near-constant descriptors while the correlation cut-off was 
kept at 0.99 during data treatment. The determination coefficient (R2), 
the negative mean absolute error (NMAE), the negative mean Poisson 
deviance (NMPD) and the negative mean gamma deviance (NMGD) were 
the four scoring functions employed for the sequential forward selection 
(SFS) module during model development with no cross-validation as 
well as 5-fold cross-validation. Therefore, eight models (= 4 × 2) were 
produced from SFS-QSAR. On the other hand, the genetic algorithm 
(GA), which follows a stochastic algorithm unlike SFS, was employed to 
generate randomized 2D QSAR models with the help of the open access 
tool GeneticAlgorithm v.4.1_2 (accessed from https://dtclab.webs. 
com/software-tools) [28]. GA utilizes techniques including 
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cross-validation and mutation to improve the fitting of the independent 
variables against the dependent variable. Nevertheless, since the model 
generation in GA-MLR largely depends on randomness, 25 runs were 
performed with the training set and the best GA-MLR model was chosen 
with respect to its internal and external predictivities. For both SFS-MLR 
and GA-MLR, the maximum number of descriptors was fixed at 5. 

2.2.3. Statistical evaluation of the models 
Statistical parameters such as the determination coefficient R2, 

adjusted R2 (R2
Adj), F-statistics, mean absolute error (MAE) and internal 

cross-validation parameter (Q2
LOO) were used for validation of the 

developed 2D QSAR models [29]. External predictivity of the developed 
models was evaluated by the external validation parameter R2

Pred [30]. 
Along with these, various rm

2 metrics including rm
2
LOO and Δrm

2
LOO were 

utilized as internal validation parameters while external validation pa-
rameters like rm

2
test and Δrm

2
test were used [31]. Inter-collinearity between 

the descriptors of the best generated models was evaluated from the 
cross-correlation matrices generated from the descriptors. On the other 
hand, the multi-collinearity of the final models was estimated by 
calculating the variation inflation factor (VIF = 1/1− R2

i , where R2
i is the 

determination coefficient (R2) determined by regressing the ith 
descriptor on the other descriptors) [32]. Additionally, 1000 runs of the 
Y-randomization test were carried out to generate models with ran-
domized response variables. The cR2

p value of the original model was 
calculated to confirm that the models were not developed by chance 
[33]. 

2.2.4. Applicability domain of the models 
The Williams plot, a plot between leverage values and standardized 

coefficients, was utilized for assessing the applicability domain of the 
models. When the leverage value of any data-point is greater than the 
hat value h* (h* = 3p/n, where p stands for the number descriptors in the 
model + 1 and n for the number of data-points in the training set), it is 
alleged to be a structural outlier. If the standardized residual of any 
particular data-point is > ±2.5, it is considered a response outlier [34]. 

2.3. Ligand-based pharmacophore mapping 

2.3.1. Conformation generation technique 
For pharmacophore modeling, 100 conformations were generated 

for each dataset compound using RDKit (https://www.rdkit.org/). More 
specifically, the EmbedMultipleConfs program of the AllChem module of 
RDKit was used to generate these conformations by choosing the energy 
cut-off (conformers with energy difference from the lowest one) as 100 
and the RMS cut-off was selected as 0.5 (i.e., only conformers with RMS 
higher than the threshold were kept). 

2.3.2. Model development 
In the current work, we explored a recently developed open-access 

tool named QPhAR or Quantitative Pharmacophore to develop phar-
macophore models as well as to align the compounds for 3D-QSAR 
mapping. The methodology of QPhAR-based model development has 
been described in detail in the original article published by Kohlbacher 
et al. [35]. Briefly in this method, a training library with multiple con-
formations of each compound is first selected. From this library, a 
template structure is selected and in the current work the most rigid 
compound of the training set was selected as a template using QPhAR. 
The template is then used to align the remaining training set compounds 
by pharmacophore alignment in which the greedy optimization tech-
nique is adopted to choose the best fitting conformations. It is to be 
noted here that, during this alignment, each pharmacophore is associ-
ated with the activity value of the parent pharmacophore. This align-
ment results in a merged pharmacophore like outcome (named as 
pharmacophore feature container) that is then clustered by the mini-
mum Euclidean distance hierarchical clustering algorithm. For 

clustering, the default cut-off value of 1.5 Å was chosen for the radius of 
pharmacophoric feature. 

Two post-processing steps followed after clustering to obtain the 
most relevant pharmacophoric features. Initially, representative fea-
tures were chosen for each cluster and secondly, the compounds with 
non-conclusive activity data were discarded. Subsequently, input vec-
tors were generated for each training sample with the help of the 
training set and the reference merged pharmacophore. Weights were 
then added to input vectors where the features having higher number of 
merged features are weighted heavier than features with fewer data. 
After generating the input features for each aligned training sample, the 
random forest (RF) regression technique was employed to produce sta-
tistical results for the training set. In this work, we firstly divided the 
data into 21 training set and 14 test set compounds randomly using the 
splitData.py program of QPhAR. Important to mention here is that the 
test set, which comprises 40% of the total dataset, was not used for 
generating the pharmacophore model but used solely for external vali-
dation of the generated model. The train.py program of QPhAR was 
employed for generating the quantitative pharmacophore and after 
obtaining satisfactory results for the training set, the predict.py program 
of the same tool was used for estimating the predictivity towards the 14 
test set compounds [35]. In order to obtain the aligned poses of the 
dataset compounds with the pharmacophore, we used the profile3-
DActivity.py program of the QPhAR-applications tool (https://github. 
com/StefanKohlbacher/qphar-applications), an extension of QPhAR 
recently released by Kohlbacher et al. [36]. All conformations of input 
dataset structures were submitted to this program in .sdf format. The 
aligned structures were subsequently utilized for 3D-QSAR modeling. 
The statistical results of the ligand-based pharmacophore models were 
checked using the statistical metrics R2, Q2, root mean square error 
(RMSE), mean error (ME), standard error (SE) and R2

Pred. 

2.4. 3D-QSAR modeling 

2.4.1. Alignment methods 
In the current work, two methods have been utilized for alignment of 

the structures, namely: (a) QPhAR-based pharmacophore alignment, and 
(b) constrained docking-based alignment. The pharmacophore-based 
alignment was described in previous section The molecular docking 
was performed with the Autodock Vina software for alignment purposes 
(described later). 

2.4.2. Model development 
3D-QSAR model development was carried out with the Open3-

DQSAR which is an open-source software [37,38]. Details about this 
methodology for model development can be found in our previous works 
[39,40]. Briefly, the compounds in the dataset are probed with a carbon 
and volume-less positively (+1) charged probe for calculation of the 
steric as well as electrostatic fields. A smart region definition (SRD) 
cut-off level of 2.0 was set and removal of N-level variables were per-
formed for field pre-treatment. The software utilizes SRD for variable 
grouping by assessing the closeness of the variable in 3D space along 
with two different variable selection algorithms, i.e.: (a) Fractional 
Factorial Design-based variable SELection (FFD-SEL), and (b) Uninfor-
mative Variable Elimination-based Partial Least Square (UVE-PLS). The 
quality of the developed 3D-QSAR-based PLS models was assessed by R2 

with the standardized error of calibration (SDEC) values, F-test results, 
Q2

LOO, leave-two-out Q2 (Q2
LTO), leave-many-out Q2 (Q2

LMO, with groups 
= 5, runs = 20), as well as by R2

Pred along with the associated stan-
dardized error of prediction (SDEP). Progressive scrambling operations 
were employed to check whether the model was unique and not created 
by chance. The scrambling operations were deployed for selected 
models using the following criteria: critical value: 0.80, type: LMO 
groups = 5, runs = 20 and scrambling = 20. The Q2

s in this work denotes 
the output of the scrambling test and depicts ‘fitted q2 values’. Robust-
ness of the generated 3D-QSAR model was validated by its low value 
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when compared with Q2
LMO. The contour maps were generated with 

isocontour values at PLS coefficients of +0.005 (green) and − 0.005 
(yellow) for the steric field and +0.003 (blue) and − 0.003 (red) for the 
electrostatic field [40]. 

2.5. Molecular docking 

Molecular docking methods were used to serve two purposes. First, 
docking based alignment was used for 3D-QSAR analyses as described 
above. For this, each dataset compound was docked at the binding site of 
FXR protein (pdb: 6HL1) [41] using the Autodock Vina software [42]. 
Second, docking of the most potent and the least potent compounds with 
the FXR protein was performed with Autodock 4.2 [43]. For both 
Autodock 4.2 and Autodock Vina, a grid box was generated with a center 
having coordinates X = 12.86 Å, Y = − 13.62 Å and Z = 12.25 Å with 
extensions of 40 × 40 × 40 Å3. The amino acids present in the grid are 
listed in Table S2. Note that the amino acid residues were renumbered in 
the current work and these new residue numbers are also provided in 
that table. The protein pdbqt file was prepared stepwise by removing the 
water molecules and bound heteroatoms, by adding hydrogen atoms and 
by adding Gasteiger–Marsili partial atomic charges. Nine and ten docked 
poses were generated from Autodock Vina and Autodock 4.2, respec-
tively. The default parameters were applied while performing the mo-
lecular docking with Autodock 4.2. 

2.6. Molecular dynamics simulations 

MD simulations of 50 ns with the docked poses as well as the apo-
protein were carried out with Amber 12 following the procedure 
described earlier [40,44]. The protein structures were protonated at pH 
7.0 using the PDB2PQR webserver (https://server.poissonboltzmann.or 
g/pdb2pqr) [45]. Trajectory analyses were performed using the PTTRAJ 
and CPPTRAJ software codes to obtain plots for the root mean square 
deviation (RMSD) and radius of gyration (RG) of proteins and ligands 
along with the root mean square fluctuation (RMSF) for the backbone 
atoms using the QtGrace software (https://sourceforge.net/projects/qt 
grace/). Additionally, trajectory analyses were also employed to deter-
mine the hydrogen bonding between the ligands and the binding site 
amino acid residues of the FXR protein. The energy contributions of the 
binding site amino acid residues were computed using the per residue 
free energy decomposition method with help of the Amber MM-GBSA 
module [40,46]. All energy components (van der Waals, electrostatic, 
polar solvation, and nonpolar solvation contributions) were calculated 
using 200 snapshots extracted from the last 10 ns MD trajectories. 

3. Results and discussions 

3.1. 2D-QSAR modeling 

Following the strategy outlined before, and keeping in mind the 
importance of mechanistic interpretation of 2D-QSAR models, we began 
by seeking the best linear models based on (a) selected interpretable 

descriptors and on (b) all descriptors from the AlvaDesc descriptors 
[40]. These two sets of descriptors were separately employed for setting 
up the 2D-QSAR models in order to check which set provides a more 
predictive model and how much difference in the statistical quality may 
exist among the most developed predictive models. Two different 
feature selection methods namely SFS and GA were also separately 
employed to develop the linear 2D-QSAR models after splitting the 
dataset into a training set and test set. A summary of the statistical re-
sults of the obtained models is provided in Table 1, in which the two 
parameters Q2

LOO and R2
Pred were initially considered for assessing their 

internal and external predictivity, respectively. 
As can be seen, GA-MLR provided statistically more predictive 

models (Model-1 and Model-2) as compared to the models generated 
with SFS-MLR. Undoubtedly, a statistically more predictive GA-MLR 
model is retrieved when all descriptors are employed instead of 
selected interpretable descriptors. With all descriptors, the GA-MLR 
model (Model-2) secured Q2

LOO and R2
Pred values of 0.862 and 0.957, 

respectively. Nevertheless, the GA-MLR model generated with selected 
interpretable descriptors (Model-1) also produced a statistically reliable 
2D-QSAR model, the overall predictivity of which (i.e., Q2

LOO: 0.831 and 
R2

Pred: 0.944) is not significantly poorer than Model-1. Moreover, Model- 
2 can provide greater insight into the structural requirement of these 
compounds for possessing higher activity that further improves its sig-
nificance as a 2D-QSAR model. These two GA-MLR models are presented 
in Table 2 and, as it can be checked from various statistical parameters, 
both these models provide satisfactory statistical significance. 

The observed vs. predicted activity plots of these models are shown 
in Supplementary Fig. S1. From Table 2, it is evident that both models 

Table 1 
Summary of the statistical results obtained from SFS-MLR and GA-MLR models.  

Method Score CV All descriptors Interpretable descriptors 

Q2
LOO R2

Pred Average Q2
LOO R2

Pred Average 

GA-MLR na na 0.862 0.957 0.910 0.831 0.944 0.888 
SFS-MLR NMAE 0-fold 0.939 0.876 0.908 0.808 0.411 0.609 
SFS-MLR NMAE 5-fold 0.929 0.840 0.884 0.819 0.619 0.719 
SFS-MLR NMGD 0-fold 0.852 0.504 0.678 0.768 0.423 0.595 
SFS-MLR NMGD 5-fold 0.779 0.162 0.470 0.803 0.135 0.469 
SFS-MLR NMPD 0-fold 0.879 0.274 0.577 0.768 0.423 0.595 
SFS-MLR NMPD 5-fold 0.827 0.874 0.850 0.803 0.135 0.469 
SFS-MLR R2 0-fold 0.878 0.860 0.869 0.812 0.580 0.696 
SFS-MLR R2 5-fold 0.907 0.688 0.798 0.819 0.619 0.719  

Table 2 
Detailed description of the GA-MLR models developed with interpretable de-
scriptors (Model-1) and all descriptors (Model-2).  

Model Equation Statistical resultsa 

Interpretable 
Descriptors 
(Model-1) 

pEC50 = +4.963(±0.182) +1.085 
(±0.080) CATS2D_08_NL+0.304 
(±0.063) F08[C–N]− 0.033 
(±0.018) H-046 + 0.406(±0.111) 
Depressant-80 − 0.136 (±0.030) 
F08[C–O] 

Ntraining = 28; R2 =

0.896; R2
Adj = 0.872; F 

(22;5) = 37.844; Q2
LOO 

= 0.832; MAELOO =

0.127; rm
2
LOO = 0.772; 

Δrm
2
LOO = 0.060; Ntest =

8; R2
Pred = 0.945; rm

2
test =

0.930; Δrm
2
test = 0.029, 

cR2
p = 0.809 

All descriptors 
(Model-2) 

pEC50 = +22.741(±1.635)+6.328 
(±0.744) WHALES20_Isol− 0.146 
(±0.015) TPSA(NO)+0.065 
(±0.067) CATS2D_08_AA− 0.266 
(±0.085) Mor04v− 7.233 
(±1.763) E1i 

Ntraining = 28; R2 =

0.911; R2
A = 0.891;F 

(22;5) = 45.204; Q2
LOO 

= 0.863;MAELOO =

0.123; rm
2
LOO = 0.811; 

Δrm
2
LOO = 0.060; Ntest =

8; R2
Pred = 0.958; rm

2
test =

0.877;Δrm
2
test = 0.034, 

cR2
p = 0.819  

a Ntraining: Number of data-points present in the training set; Ntest: Number of 
data-points present in the test set. 
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were generated with satisfactory statistical predictivity. For example, 
the rm

2
LOO and Δrm

2
LOO values of Model-1 are 0.772 and 0.060, respectively, 

whereas for Model-2, these values were found to be 0.811 and 0.060, 
respectively. These values were well above (for rm

2
LOO cut-off value > 0.5) 

or below (for Δrm
2
LOO cut-off value < 0.2) their cut-off values for having 

satisfactory internal predictivity. The external predictivity of these 
models were even more satisfactory as rm

2
test of Model-1 and Model-2 were 

found to be 0.930 and 0.877, respectively, whereas the Δrm
2
test of these 

models are 0.029 and 0.034, respectively. Next, we checked the corre-
lation matrix of the independent parameters of these two models, which 
revealed that no high intercorrelation does exist. Simultaneously, multi- 
collinearity of these models was also checked with the variation infla-
tion factor (VIF) values. Model-1 and Model-2 have VIF values ranging 
from 1.16 to 1.76 and 1.18− 1.50, respectively. These values clearly 
indicate that the multi-collinearity does not exist in these models since 
these values lie well below the cut-off value of 5. High cR2

p values were 
also obtained from the Y-randomization tests for both models, indicating 
that these models were not developed by chance. 

Furthermore, it is absolutely necessary to look at the applicability 
domain (AD) of the established 2D-QSAR models. The Williams plots 
generated for Model-1 and Model-2 are presented in Fig. 1. One training 
set compound of Model-2 was found to be a structural outlier but it was 
predicted satisfactorily by the model and therefore it was retained. By 
contrast, no structural outlier was detected in Model-1 but each of these 
models contained one response outlier. 

The relative significance of the descriptors of Model-1 and Model-2 
are shown in Fig. 2. As expected, the models developed with interpret-
able descriptors (Model-1) provide further insight into the structural 
requirements of 3-benzamidobenzoic acid derivatives. At the same time, 
the significance of different descriptors of Model-1 varied consistently 
whereas for Model-2, two descriptors have high significance while the 
other three descriptors have almost negligible significance. 

Therefore, we first describe and discuss the descriptors of Model-1. 
The CATS2D_08_NL was found to be the most significant descriptor of 
Model-1 with positive correlation with the response variable. This 
descriptor belongs to the category of 2D Chemically Advanced Template 
Search (CATS) descriptors that are highly useful descriptors to under-
stand the required 2D pharmacophoric features in the compounds and at 
the same time, these descriptors also specify the required topological 
distance between the required features [47]. For example, 
CATS2D_08_NL indicates the presence of negative ionizable and lipo-
philic features separated at the topological distance of 8. Most of the 
potent derivatives showed higher values (i.e., 2) for this parameter 
whereas the lower active compounds had lower values (i.e., 0 or 1), as 
shown in Fig. 3. 

The second most significant descriptor of Model-1 is Depressant-80, 
which is a drug-like index representing the Ghose-Viswanadhan- 
Wendoloski antidepressant-like index at 80% [48]. This drug-like 

index is originated from studies of the physicochemical properties of a 
specific group of drugs, antidepressants in this case with a qualifying 
range of 80%. The physicochemical properties that are considered for 
calculating such descriptors include lipophilicity (ALogP, range: 
1.4− 4.9), molar refractivity (AMR, range: 62− 114), molecular weight 
(MW, range: 210− 380) and number of atoms (nAT, range: 32− 56). The 
positive correlation of this descriptor with the biological activity in-
dicates that higher values of this descriptor favors higher biological 
activity. 

The third most influential descriptor of Model-1 is F08[C–N], which 
is basically a 2D atom pair descriptor representing the frequency of 
carbon and nitrogen atoms located at topological distance of 8 [49]. 
Again, a positive correlation with the descriptor indicates that higher 
values for this descriptor should lead to higher biological activity. For 
example, one of the most potent derivatives SN04 (pEC50: 7.01) has F08 
[C–N] value of 2 while one of the least potent derivatives SN31 has for 
this descriptor a value of 0 (Fig. 4). 

The last two descriptors of the models are F08[C–O] and H-046, both 
having negative correlation with the FXR partial agonistic activity of 3- 
benzamidobenzoic acid derivatives. Among these, F08[C–O] possesses 
higher significance and similar to F08[C–N], this descriptor is a 2D 
atom-pair descriptor but the former stands for carbon and oxygen atoms 
located at topological distance of 8 [49]. Naturally, higher values for this 
descriptor were found mostly in the compounds with lower partial 
agonistic activity. One example is shown in Fig. 4 with the most potent 
(SN01) and the least potent (SN35) compounds of the dataset. The dif-
ferences in the values of F08[C–O] stems from the fact that n-butoxy side 
chain in SN35 gives rise to an additional center for oxygen leading to 
higher value of F08[C–O] that results in its lower activity. The same 
argument is valid for one of the most potent derivative SN04 (structure 
shown in Fig. 4) with high F08[C–O] value of 8 and it explains why 
compounds with biphenyl scaffolds were found to be more potent as FXR 
partial agonists when compared to those containing the phenoxyphenyl 
scaffold. 

The atom-centered fragment descriptor H-046, in contrast, repre-
sents a specific fragment in which the hydrogen atom is attached to a sp3 

hybridized carbon (C0) whereas no heteroatom (X) is attached to the 
next carbon. Therefore, this atom centered fragment descriptor indicates 
the presence of terminal alkyl groups without heteroatom. The presence 
of such fragment was found to diminish activity. For example, the value 
of this descriptor was found to be 0 in the most potent compound SN01 
whereas the least active compound SN35 has a value of 7, which clearly 
demonstrates the unfavorable influence of long aliphatic chains for 
greater biological activity towards FXR. 

Model-2, being the most statistically significant 2D-QSAR model, 
comprises five descriptors among which WHALES20_Isol and E1i possess 
the maximum significance. Details about these five descriptors are 
provided in Table 3. Both WHALES20_Isol and E1i are 3D descriptors 

Fig. 1. Williams plots for the 2D-QSAR models, Model-1 (left) and Model-2 (right).  
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Fig. 2. Relative importance of the descriptors of Model-1 (left) and Model-2 (right).  

Fig. 3. Importance of the CATS2D_08_NL descriptor with respect to selected dataset compounds.  

Fig. 4. Importance of the F08[C–N] and F08[C–O] descriptors with respect to selected dataset compounds.  
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and thus their values are highly dependent on the specific 3D confor-
mation of the compounds and clearly related to their shape. As per the 
relative significance, the Weighted Holistic Invariant Molecular (WHIM) 
descriptor E1i [50] has the maximum significance and is negatively 
correlated to the response variable. This descriptor stands for relevant 
3D information regarding size, shape, symmetry, and atom distribution 
of molecular structures. At the same time, E1i implies that a high ioni-
zation potential of the compound is detrimental to its partial agonistic 
activity towards FXR. 

The WHALES20_Isol, on the other hand, is positively correlated with 
the biological activity, that is, higher numerical values for this 
descriptor were found in the more potent derivatives. This descriptor 
belongs to the category of Weighted Holistic Atom Localization and 
Entity Shape (WHALES) descriptors, which are comparatively novel 
descriptors developed to transform structural and pharmacophore in-
formation of known biologically active phytochemicals to synthetically 
accessible iso-functional compounds with the help of similarity-driven 
approaches [51]. The 3D Morse descriptor Mor04v is originated from 
the equations used in electron diffraction studies. Mor04v is weighed by 
the van der Waals volume and at the same time, this descriptor is 
negatively correlated with the biological activity. As such, that means 
that along with ionization potentials, higher van der Waals volumes can 
be detrimental to the biological activity. The last two descriptors of the 
models are CATS2D_08_AA and TPSA(NO), which are more interpret-
able than the other three descriptors of the model even though with 
relatively less significance. Interestingly however is that the presence of 
CATS2D_08_AA again means that a topological distance of 8 is highly 
crucial in these compounds and particularly the existence of two 
hydrogen bond acceptor features located at such topological distance. 
The final descriptor of the model is TPSA(NO), which reveals the to-
pological polar surface area with polar contributions for nitrogen and 
oxygen atoms. A negative correlation is observed between TPSA(NO) 
values and the pEC50 values, indicating that lower values for this 

descriptor are likely to provide more potency in the compounds as 
partial agonist of FXR. Two descriptors related to polarity (i.e., E1i and 
TPSA(NO)) indicate that higher van der Waals interactions and lower 
polar interactions determine the biological activity of these compounds. 

3.2. Ligand-based pharmacophore mapping 

The quantitative ligand-based pharmacophore was generated with 
the most rigid structure automatically selected by the QPhAR program, i. 
e.: SN17. The template pharmacophore aligned with the compound 
SN17 is shown in Fig. 5 along with the pharmacophore container and 
final quantitative pharmacophore (i.e., hpmodel), which contained ten 
pharmacophore features. The pharmacophore features of the hpmodel 
consist of four aromatic (R), three hydrophobic (H), one donor (D), one 
acceptor (A) and one negative ionizable (N) characteristics [35,36]. It 
must be noted that, even though ten features were obtained in the 
model, it does not mean that a compound needs to bind to all these 
features of the hpmodel. Rather, these features have their own weigh-
tages, and alignment of pharmacophore of a specific compound with 
different features of the hpmodel gives rise to its predicted activity that 
is required to be compared with its experimental activity. 

The statistics of the quantitative pharmacophore mapping is sum-
marized in Table 4. The model developed with 21 training set com-
pounds afforded a highly predictive model with R2 of 0.933 and Q2 of 
0.901. However, the true predictivity of the model was tested with the 
test set containing 14 compounds. Initially, an R2

Pred value of 0.437 was 
obtained which was below the cut-off value of 0.50. However, it was 
noticed, that only one compound (SN22) was predicted poorly by the 
model and removal of it resulted in an improved R2

Pred value of 0.719. At 
the beginning, we thought that the poor prediction (observed pEC50 =

5.77, predicted pEC50 = 6.75) was due to the conformers of this 

Table 3 
Description of the independent variables appearing in Model-2.  

Descriptor Category Description 

E1i WHIM (3D) 1st component accessibility directional WHIM 
index/weighted by ionization potentials 

WHALES20_Isol WHALES (3D) WHALES Isolation degree (Isol) (percentile 
20) 

Mor04v MoRSE (3D) Signal 04/weighted by van der Waals volumes 
CATS2D_08_AA CATS2D CATS2D Acceptor-Acceptor at lag 08 
TPSA(NO) Molecular 

properties 
Topological polar surface area with N, O polar 
contributions  

Fig. 5. Flow of quantitative pharmacophore (or hpmodel) generation in QPhAR with the training set from the present data.  

Table 4 
Statistical results for the QPhAR based quantitative pharmacophore model.  

Parameter Training Test 

N 21 14 
R2 0.933 – 
Q2 0.901 – 
RMSE 0.193 – 
ME 0.130 – 
SE 0.143 – 
R2

Pred – 0.437 
R2

Pred
a – 0.719  

a Obtained after removal of SN22 from the test set. 
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compound. Therefore, we generated additional 50 conformations for 
this compound with the genetic algorithm technique of the Openbabel 
tool [52]. However, the predictivity failed to improve. 

In spite of having poor prediction for SN22, it may not be denied that 
the pharmacophore mapping predicted other compounds of the dataset 
considerably well, and it leads us to the understanding of the structural 
requirements of the compounds for higher partial agonistic activity to-
wards the FXR protein. In Fig. 6, the pharmacophore-aligned poses of 
three dataset compounds with varying biological activities are shown. 
The most potent compound SN01 (pEC50 = 7.600, predicted pEC50 =

7.096) was mapped with five pharmacophore features (2R+1D+1A+1 
N) whereas the least potent compound SN35 (observed pEC50 = 5.500, 
predicted pEC50 = 5.579) mapped with four features (2H+1A+1 N). It is 
therefore clearly understood that the weightages of the aromatic fea-
tures (R) are higher as compared to the hydrophobic (H) features. 
Another compound, SN30 with pEC50 of 6.690 was mapped with four 
features (2R+1A+1 N). Noticeably, the terminal benzene of biphenyl 
scaffold was mapped in SN01 whereas the phenyl group attached to 
carboxamide was mapped in SN35. It suggests the greater influence of 
the biphenyl scaffold towards higher biological activity as compared to 
the phenoxyphenyl scaffold. Additionally, the donor feature (D) mapped 
with the amino group of SN01 was also found to have high significance 
as far as biological activity is concerned. The presence of acceptor (A) 
and negative ionizable (N) features in all these compounds clearly point 
out the importance of the carboxylic acid group, which is of high sig-
nificance due to the fact that interactions of the carboxylic acid group 
with the arginine residue of FXR are well-established for determining 
the affinity of the compounds towards the FXR protein. 

3.3. 3D-QSAR modeling 

Considering that the alignment technique plays a crucial role in the 
3D-QSAR modeling, two different types of alignment techniques were 
used to perform 3D-QSAR analyses with the Open3DQSAR tool [38]. 
First, the obvious choice is the alignment obtained from the 
above-mentioned pharmacophore modeling. Second, we performed 
molecular docking analyses with each structure of the dataset at the 
binding site of FXR enzymes (PDB:6HL1) using the AutoDock Vina 

software [42,43]. However, the best poses (with maximum binding 
energy) failed to provide any statistically reliable 3D-QSAR model (re-
sults not shown). Therefore, we picked those poses where the carbox-
ylate group of the compounds interacted with the Arg331 residue of the 
protein, taking into account the crucial role of this interaction in 
determining the activity [22,41]. More specifically, we resorted to the 
constrained docking technique for obtaining the docking-based align-
ment for the 3D-QSAR modeling. On the other hand, it is important to 
understand that the QPhAR based alignment that we used in this work is 
basically a template-based alignment that was obtained by the greedy 
optimization method [35,36]. The results of the 3D-QSAR modeling 
analysis are shown in Table 5. 

The most predictive 3D-QSAR model was obtained from the align-
ment derived from QPhAR by applying the FFD-SEL based feature se-
lection technique. This model yielded values for Q2

LOO and R2
Pred of 0.657 

and 0.790, respectively. However, the constrained-docking based 
alignment also let to a satisfactory 3D-QSAR model using the UVE-PLS 
feature selection technique, as can be observed from its obtained 
values for Q2

LOO and R2
Pred (0.635 and 0.716). These results reflect that 

the constrained docking-based predictions were successful in extracting 
meaningful information about the structural requirements of these 

Fig. 6. Pharmacophore alignment of (A) SN01, (B) SN30 and (C) SN35 with hpmodel.  

Table 5 
Statistical results of the 3D-QSAR modeling analyses performed with 
Open3DQSAR.  

Parameter QPhAR Constrained Docking 

FFD-SEL UVE-PLS FFD-SEL UVE-PLS 

PC a 4 5 2 4 
Ntraining 28 28 28 28 
F-test 86.25 120.231 14.056 70.291 
R2/SDEC 0.937/0.135 0.965/101 0.351/0.435 0.924/0.149 
Q2

LOO/SDEP 0.657/0.317 0.453/400 0.191/0.486 0.635/0.326 
Q2

LTO/SDEP 0.640/0.324 0.440/0.404 nd 0.619/0.333 
Q2

LMO/SDEP 0.590/0.339 0.389/0.421 nd 0.527/0.369 
Ntest 7 7 7 7 
R2

Pred/SDEP 0.790/0.289 0.807/0.277 nd 0.716/0.336 
Qs

2 0.494 na nd 0.418  

a PC: Number of principal components. 
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compounds for higher biological activity. Nevertheless, on the basis of 
higher statistical predictivity, the QPhAR alignment-based model is 
described and discussed here. The contour maps obtained from this 3D- 
QSAR model are shown in Fig. 7 with respect to the most potent (SN01) 
and the least potent (SN35) compounds of the current dataset. 

First of all, the significance of steric features (82.67%) is consider-
ably higher than that of the electrostatic features (17.33%) in this 3D- 
QSAR model. The biphenyl moiety of the SN01 was found to be 
remarkably close to the steric favorable fields. On the other hand, the 
lack of any bulky residue near the steric favorable contour map for SN35 
indicates that bulky aromatic residues are essential for pertaining to 
higher activity. Further analysis revealed that the phenoxyphenyl scaf-
folds of some potent compounds are also inserted into the steric favor-
able field highlighting the importance of the presence of bulky aromatic 
residues attached to benzene carboxamide residue. The latter is better 
reflected from the fact that most of the less potent compounds fail to 
insert into these same steric fields. Naturally, the question remains 
whether the biphenyl or phenoxyphenyl moieties fulfil steric re-
quirements only or an electrostatic influence is also involved in estab-
lishing their potency. Even though electrostatic interactions were less 
effective in the 3D-QSAR model, the biphenyl residue of SN01 was found 
to be close to both electropositive and electronegative fields. Therefore, 
apart from steric interactions − i.e.: related more to the van der Waals 
interactions with binding site amino acids, these aromatic rings may also 
be involved in interactions in which the electron distribution of aromatic 
rings may play an important role in the binding. 

In addition, we noticed that the terminal benzene of phenoxyphenyl 
residue was close to the electronegative field and more importantly the 
electron rich oxygen was inserted into the electronegative field, signi-
fying that its replacement with non-polar –CH2 may indeed deteriorate 
the activity. Furthermore, it can be also observed from Fig. 7 that the 
aliphatic side chain of SN35 is inserted into the polar field indicating 
unfavorable interactions. Significantly, no contour map was found near 
the carboxylate moiety of these compounds in spite of the fact that this 
moiety is likely to be extremely important as suggested by the 2D-QSAR 
and pharmacophore modeling. Yet, this can be explained by the fact that 
all compounds in the dataset contained this moiety and therefore no 
significant field change was detected by 3D-QSAR and the same argu-
ment holds true for the benzamide residue as well. Nevertheless, apart 

from having statistically reliable results, the 3D-QSAR model offers 
some essential information regarding the structural requirements of 
these compounds for higher activity. 

3.4. Molecular dynamics simulations 

Finally, in order to understand the dynamic behavior of receptor- 
bound complexes of 3-benzamidobenzoic acid derivatives, we carried 
out 50 ns MD simulations with the complexes of two derivatives, i.e. the 
most potent compound of the dataset (SN01) and the least potent 
compound of the dataset (SN35), as well as with the apoprotein. Along 
with these, for comparative purposes, we also performed MD simula-
tions of the chenodeoxycholic acid (CDCA) − i.e., a physiological FXR 
agonist. Note that, even though CDCA is a considered as a full agonist, 
the reported EC50 values reported for this compound have a range of 
3–30 μM. Therefore, exact comparison with the biological activity of this 
compound with our dataset compounds is not justified. However, in-
clusion of this compound should help us to differentiate key structural 
changes associated with the partial and full agonist behaviors. Both 
dataset compounds were docked with the X-ray crystal structure of FXR 
protein (PDB: 6HL1) using the Autodock software [42]. Initially, an 
analysis of the trajectory was carried out to understand the stability of 
the complexes. Fig. 8 depicts some important outcomes of these MD 
simulations. As can be seen, the RMSD plots of protein complexes and 
ligands clearly show that increased fluctuations are observed for the 
least potent analogue SN35 as compared to the most potent analogue 
SN01. More importantly, the SN01-FXR complex was more stable than 
the apoprotein and CDCA-FXR complex. Indeed, the average RMSDs 
obtained from SN1− FXR, SN35− FXR, apoprotein− FXR and CDCA− FXR 
were found to be 1.37 Å, 1.89 Å, 1.67 Å and 1.69 Å, respectively. The 
ligand RMSD plots show that SN01 was stabilized after a 5–6 ns run 
whereas higher fluctuation was noted in the case of SN35 throughout the 
simulation even though the ligand RMSD remained less than 2 Å for both 
these ligands. 

Understandably, both complexes were found to be stable during the 
simulations simply because of the fact that both these were active 
against FXR protein. Here, our main focus should be on the differences in 
their potencies. The CDCA, on the other hand, depicted the maximum 
stability throughout the MD simulation. The RMSF plot provides some 

Fig. 7. (A) Contour maps obtained from the best 3D-QSAR model (Green: Steric favorable; Blue: Electropositive favorable; Red: Electronegative favorable). (B) SN35 
with steric features (C) SN01 with electrostatic features and (C) SN35 with electrostatic features. 

S. Mitra et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 157 (2023) 106789

10

interesting hints. First, it is clearly observed that the fluctuations of 
amino acid residue remain reduced in the case of SN01 as compared to 
SN35 as well as to apoprotein but more importantly, the fluctuation 
between residues 84− 92, 104− 114, 117− 132 decreased significantly 
for SN01. These residues belong to H5, H6 and H8 helices, respectively. 
Recently, Gohda and co-workers pointed out that the larger the fluctu-
ations are in the H5, H6 or H8 helices, the less agonistic activity a 
compound should possess [53,54]. Moreover, as compared to both the 
apoprotein and the SN35− complex, the SN01-complex displayed sig-
nificant stability in the residues 205− 212, which are part of H11 (resi-
dues 186− 214) that is involved directly in the formation of heterodimer 
with retinoid X receptor (RXR) in order in order to regulate transcription 
[54]. A sharp difference was observed in the fluctuations of CDCA-FXR 
complex with other complexes in the H6 domain and this observation is 
consistent with a previous work where the fluctuations of another full 
agonist GW4046-FXR complex in this region have been found to be 
significantly less as compared to a complex formed with a partial agonist 

[53]. In addition, as compared to S1− and S35− complexes, low fluc-
tuations were noted for the CDCA-FXR complex in the residues 
214− 217, which belong to the AF-2 loop that connects H11 and H12 
(see Fig. S2). Previously, Merk et al. [41] pointed out that partial ago-
nists (i.e., S1 and S35) destabilize this AF-2 loop and this information 
complies with our MD simulation results. The radius of gyration plot, on 
the other hand, points to the fact that more compactness is observed for 
the FXR− SN01 complex as compared to the FXR-SN35 complex. Clearly, 
the current MD simulations successfully project the differences in the 
activities of SN01 and SN35. 

Following on, we carried out a hydrogen bond analysis with the 
produced MD trajectories. For this analysis, we selected those amino 
acids that lied within 8 Å radius of the bound/docked ligands. Fig. 9 
shows the plots of the number of hydrogen bonds recorded during 50 ns 
runs for the SN01 and SN35 complexes. First, it can be observed that 
hydrogen bonds are consistently formed among the ligands and sur-
rounding amino acids in both complexes but the total number of 

Fig. 8. Plots obtained from an analysis of the trajectories for SN01, SN35 and apoprotein – (A) Protein/complex RMSD, (B) ligand RMSD, (C) RMSF and (D) Radius 
of gyration. 

Fig. 9. Number of hydrogen bonds formed among the binding site amino acids and ligands during 50 ns MD simulations.  
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hydrogen bonds was slightly higher in SN01 in comparison with SN35, 
especially in the last 20 ns simulation time. The same plot generated 
with CDCA (see Fig. S3) shows that the number of hydrogen bond for-
mation for SN01 is even higher than that pertaining to CDCA. 

Further investigations revealed that the carboxylate groups of both 
these ligands formed stable hydrogen bond interactions with Arg89 
(Arg331 in PDB: 6HL1 since the amino acids were renumbered for MD 
simulation). More specifically, a total of 60,208 and 53,952 frames were 
counted where hydrogen bond interactions occurred between any one 
oxygen atom of the carboxylate group with the side chain of Arg89. 
Nevertheless, in the case of SN01, around 55% frames were found where 
hydrogen bond interactions took place between its carboxylate group 
and the Met23 residue of FXR protein. For SN35, only 38% frames 
depicted such interactions. It is also important to mention that the car-
boxamide (− CONH− ) group of SN01 interacted with Ser90 by hydrogen 
bond interaction whereas no such interaction was recorded between the 
SN35 and Ser90. 

The final receptor-bound poses of SN01 and SN35 with the FXR 
protein were extracted after 50 ns of MD simulations to check the key 
interactions that are depicted in Fig. 9. 

It is clearly visible that the interactions with the biphenyl scaffold of 
SN01 contributed largely to high binding affinity towards the receptor. 
The terminal benzene moiety of this scaffold interacted with residues 
such as Met123, Trp212 and Ile110 with π-Sulfur, π-π and π-alkyl in-
teractions, clearly suggesting that the aromaticity of this ring plays an 
important role in ligand-receptor interactions. Noticeably, the alkoxy 
chain of SN35 fails to replicate these interactions. The interactions with 
Ile110 and Met123 may be of high significance since these residues are 
in fact part of H6 and H8 helices of FXR protein, respectively. Moreover, 
the π-π interaction of SN01 with Trp212 should not be ignored especially 
because the SN01− complex differed from the SN35− complex as the 
former showed extremely low fluctuations in the residues 205− 212. As 
explained by Merk et al. [41], this tryptophan residue plays a crucial role 
in the FXR modulation. In fact, endogenous FXR agonist CDCA failed to 
activate W212A and W212Y mutated FXR. Overall, the interactions 
obtained from the biphenyl scaffold of SN01 were significantly higher as 
compared to the interactions obtained from the butoxyphenyl scaffold of 
SN35. This directly connects with the interpretation derived from the 
3D-QSAR modeling and pharmacophore mapping. Note that, complying 
with the interactions displayed in Fig. 10, the 3D-QSAR model pointed 
out that not only steric factors but some electrostatic interactions may 
also contribute to the higher activity of SN01. The interaction between 

the Met86 residue and SN01 is also worth mentioning here since such 
interaction was missing for SN35. It is reasonable to assume that this 
interaction with SN01 should have contributed to the stabilization of the 
H5 helix, as shown in the RMSF plot (Fig. 8C). 

Since substantial hints already show that stabilization of H5, H6 and 
H8 helices may play a significant role in determining the activity of these 
3-benzamidobenzoic acid derivatives, we finally performed per-residue 
decomposition analyses with selected residues of these helices that 
remained close to the bound ligands. The results of such analyses are 
depicted in Fig. 11. 

The residues of H5 and H6 helices that showed maximum differences 
in the interactions between SN01 and SN35 are Met86, Leu106 and 
Ile110. For all these amino acid residues, the van der Waals interaction 
energies were much greater in SN01 as compared to SN35. Additionally, 
Leu106 and Ile110 were also found to have significant electrostatic in-
teractions with SN01 indicating that π-alkyl interactions may contribute 
to interactions between these ligands and the FXR protein. Even though 
a significant change of interactions was not noticed for the residues of 
H5 helix, SN01 showed increased van der Waals interactions with resi-
dues such as Ile120, Met123 and Tyr127. It may therefore be summa-
rized that greater overall stabilization imparted to H5, H6 and H8 
helices contributes largely towards the higher agonistic potential of 
SN01 as compared to SN35. This inference was however obtained not 
only from the MD simulations but also from the 2D-QSAR, 3D-QSAR and 
pharmacophore mapping analyses. Similarly, the per residue analyses 
performed with the CDCA− FXR complex is presented in Fig. S4 and it 
can be observed that, save for a few residues, both CDCA and SN01 
depicted similar binding with the residues of the H5, H6 and H8 helices. 

The input files for the 2D-QSAR and 3D-QSAR modeling, output files 
of the pharmacophore mapping and PDB files used for the docked poses, 
which were also used as input structures in the MD simulations, are 
provided in our Github repository https://github.com/ncorde 
irfcup/FXR_agonists. 

4. Conclusions 

The present work reports a range of cheminformatics and molecular 
modeling studies with a series of 3-benzamidobenzoic acid derivatives 
in order to understand their structural requirements for higher potency 
towards FXR protein as partial agonists. Each study revealed important 
information pertaining to the structural requirements of these de-
rivatives for higher activity towards the FXR protein. The 2D-QSAR 

Fig. 10. The receptor-ligand interactions for the SN01− complex (left) and the SN35− complex (right) extracted from the last frame of the MD simulations.  
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models highlighted specific 2D-pharmacophoric and topological re-
quirements (cf. Figs. 3–4) as well as charge distributions, surface areas 
and van der Waals volumes that lead to the biological activity of the 
compounds. The pharmacophore mapping was performed with a novel 
as well as less explored ligand-based pharmacophore mapping tool 
named QPhAR. This open-access software tool was found to be 
extremely useful towards extracting key 3D-pharmacophoric features 
(cf. Fig. 6), that in turn were found also to be highly compliant with the 
results obtained from the other in silico models developed in this work. 
3D-QSAR models also provided us satisfactory predictivity and at the 
same time, helped us to deduce the key pharmacophoric features, steric 
and electrostatic factors responsible for determining the higher activity 
of the 3-benzamidobenzoic acid derivatives (cf. Fig. 7). Even though 
comparatively faster ligand-based techniques provided insights into the 
structural requirements, it was the structure-based strategy (i.e.: the MD 
simulations) that guided us to link the structural interpretations ob-
tained from 2D-QSAR, 3D-QSAR and pharmacophore models with the 
involvement of specific amino acid residues at the binding site of the 
FXR protein. The MD simulations revealed that the hydrogen bond in-
teractions with the carboxylate group of the ligands play an important 
role in ligand receptor binding but it is the higher stabilization of 
different helices of FXR (e.g., H5, H6 and H8) though aromatic scaffolds 
of the ligands that may lead to higher activity for these ligands. This 
work thus comprises important guidelines for designing novel FXR 
partial agonists as new medicines in the treatment of NAFLD. What is 
more, it mainly relied on open-access tools in order to develop the in 
silico models that thus ensures their reproducibility as well as utilization. 

Previously, a number of studies have been reported with different 
series of compounds (benzimidazole derivatives, anthranilic acid de-
rivatives, etc.) with agonistic properties for FXR [55–57]. Similar to the 
current investigation, these studies highlighted the importance of hy-
drophobic, aromatic and hydrogen bond acceptor features for deter-
mining the agonistic activity towards the FXR protein. In addition, the 
importance of the hydrogen bond interactions between the ligand and 
the Arg89 residue has been highlighted in all these studies. Furthermore, 
interactions with amino acid residues like Leu45, Ala49, Arg89, Met123, 
Tyr127, Trp212 and Met208 were found to be crucial in establishing the 
biological activity. Chen et al. presented a multi-model in silico analysis 
with anthranilic acid derivatives as partial FXR agonists that depicted 
the importance of solvent accessible surface area and charges for con-
trolling their activity [56]. Evidently, the later results are well in line 
with the results of our present investigation. Furthermore, some recent 
studies have focused on the mechanisms behind full agonism, partial 
agonism and antagonism properties of various compounds towards the 
FXR protein. These recent investigations revealed that even though the 
binding sites of the natural agonist CDCA, full agonists, partial agonists 
and antagonists do not vary much in FXR, the conformational changes 
(especially in the H11 helix and AF-2 loop) [41] imparted by these 
bindings are responsible for different biological outcomes. The latter 

therefore leaves us with a future opportunity to look into the charac-
terization of FXR antagonists with similar in silico methods described in 
this work starting from a dataset of FXR antagonists. Detailed MD 
simulation analyses may be also performed to understand the confor-
mational changes imparted by various FXR ligands (i.e., natural sub-
strate CDCA, full agonists, partial agonists, and antagonists) to facilitate 
novel lead discovery targeting the FXR protein. 
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