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ABSTRACT 
Olanzapine is one of the most prescribed atypical antipsychotics to treat psychiatric illness and is asso-
ciated with weight gain and metabolic disturbance. The present study investigated the olanzapine- 
regulated metabolic pathways using functional enrichent analysis including binding affinity with G-pro-
tein-coupled receptors (GPCRs). Proteins modulated by olanzapine were retrieved from 
SwissTargetPrediction, DIGEP-Pred, and BindingDB and then enriched in Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) to assess molecular function, biological process, and cellular 
components including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We used hom-
ology modeling to improve the 3D structure for GPCR synapse proteins including dopamine, sero-
tonin, muscarinic, and histamine receptors which were then optimized using molecular dynamics (MD) 
simulations. The protein-olanzapine binding mechanisms for different GPCR binders were evaluated 
using molecular docking; later refined by MD simulations. Binding mechanism of olanzapine with D2, 
5HT1A, 5HT2A, 5HT2B, 5HT2C, M1, and M2 receptors were created using homology modeling and 
optimized using MD simulations. In target identification, it was observed that olanzapine majority tar-
geted G-protein coupled receptors. Further, enrichment analysis identified around 76% of the total 
genes regulated in molecular function, biological process, and cellular components were common 
including KEGG pathways. Moreover, it was observed that olanzapine had a major potency over the 
neurotransmitter synapse including neuroactive signals . Olanzapine-induced weight gain and meta-
bolic alterations could be due to the deregulation of multiple synapses like dopamine, serotonin, mus-
carinic, and histamine at the feeding center followed by cGMP-PKG, cAMP, and PI3K-Akt signaling 
pathways.  

HIGHLIGHTS 

� Olanzapine is used in the management of psychiatric illnesses. 
� Olanzapine causes disturbance in lipids and glucosehomeostasis and manipulates energy 

expenditure. 
� Olanzapine-induced weight gain may occur due to the deregulation of the multiple synapse and 

cGMP-PKG, cAMP, and PI3K-Akt signaling pathway 
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Introduction 

Olanzapine, one of the atypical antipsychotics covers the 
majority portion of the prescription in the management of 
psychiatric illnesses including schizophrenia (Narasimhan 
et al., 2007). Although it has importance to treat psychotic ill-
ness it is well recognized for inducing weight gain which has 
been successfully reported in the subjects undergoing olan-
zapine pharmacotherapy and experimental rat animal models 
and zebrafish (Khanal et al., 2020; Lord et al., 2017). 

Multiple investigations have been made to understand olan-
zapine-induced obesity in which hyperphagia and compromised 
ATP utilization or energy expenditure followed by mild sedation 
are in trend (Fernø et al., 2011; Ullagaddi et al., 2021). However, 
the conditions observed in the experimental animal models are 
quite interesting i.e. dose-dependent, gender-dependent, and 
strain-dependent; primarily focused female Sprague Dawley ani-
mal models at the dose of 2 mg/kg bid (Albaugh et al., 2006; 
Patil et al., 2006). Also, a report has been made to compromise 
the catabolism of the lipid and metabolic rate due to the expos-
ure of olanzapine; demonstrated in the olanzapine-exposed 
zebrafish larvae and enhanced food intake in adult zebrafish 
(Khanal et al., 2020). 

Additionally, olanzapine-induced weight gain is one of the 
popular animal models in investigating anti-obese drugs pri-
marily targeting the subjects under the pharmacotherapy of 
olanzapine-induced weight gain (Hu et al., 2014; 
Parasuraman et al., 2017; Ullagaddi et al., 2021). However, 
since the mechanism of olanzapine-induced obesity is not 
well established, it becomes quite problematic in proposing 
the mechanism of action of their anti-obese drugs as the tar-
gets affected by the inducing agent i.e. olanzapine remains 
unclear for obesity. Hence, it is an important aspect to evalu-
ate the primarily regulated pathways and their association 
with multiple proteins and pathways via olanzapine is in 
need. In this regard, the present studyaimed to investigate 
the association of olanzapine in modulating multiple proteins 
and their linkage with various pathways in obesity through 
functional enrichment analysis based on the theory of ‘a sin-
gle compound can regulate multiple proteins’. 

Methodology 

Identification of olanzapine-regulated/binding targets 

The SMILES of olanzapine was retrieved from the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/) and their tar-
gets were predicted in SwissTargetPrediction; (Gfeller et al., 
2014; http://www.swisstargetprediction.ch/); probability 0.5, 
DIGEP-Pred; (Lagunin et al., 2013; http://www.way2drug.com/ 
ge/); pharmacological activity 0.5, and BindingDB which 
were a public, web-accessible database of measured binding 
affinities for biomolecules, genetically or chemically modified 
biomolecules, and synthetic compounds; (Liu et al., 2007; 
https://www.bindingdb.org/bind/index.jsp); probability 0.7 
and the codes of each protein were retrieved from UniProt 
database (https://www.uniprot.org/). The regulated and bind-
ing proteins were further overlapped with proteins reported 
for obesity concerning the DisGeNET database (Pi~nero et al., 
2017; https://www.disgenet.org/) concerning the C0028754 
entry. 

Functional enrichment analysis 

The regulated and binding proteins were then enriched in 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING; Szklarczyk et al., 2019; https://string-db.org/) ver. 
11.0 for Homo sapiens for functional enrichment analysis to 
evaluate the molecular function, targeted cellular compo-
nents, and multiple biological spectra followed by Kyoto 
Encyclopedia of Genes and Genomes (KEGG; https://www. 
genome.jp/kegg/) metabolic pathways. The network was 
constructed using Cytoscape (Shannon et al., 2003; https:// 
cytoscape.org/) ver 3.5.1. The constructed network was 
treated as directed and evaluated using the edge count vari-
able. The node size was directly proportional to the edge 
count. Additionally, the common interaction of gene ontol-
ogy terms and KEGG-associated genes were analyzed using 
Venny 2.0; (Oliveros, 2007–2015; https://bioinfogp.cnb.csic.es/ 
tools/venny/). 
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Homology modeling of proteins 

Using the crystal structures from the protein data bank (PDB) 
as templates, the homology modeling tool Modeller 7v7 
(Mart�ı-Renom et al 2000; Sali & Blundell 1993; Fiser et al., 
2000) was used to create a reliable 3D homology model for 
each protein. The ligand and PDB codes with maximum simi-
larity with olanzapine were summarized (Table 1). Later the 
proteins were prepared for molecular docking and molecular 
dynamic (MD) simulations. The respective ligand was used 
for active site determination in the docking study. 

Molecular docking and MD simulation setup 

Since the interaction of olanzapine with the aforementioned pro-
teins and their linkage with various pathways are vital and effect-
ive in biochemical and biological processes, a molecular docking 
protocol was followed to trace a stable ligand-protein complex 
(Morris & Lim-Wilby, 2008). Molegro Virtual Docker (http:// 
molexus.io/molegro-virtual-docker/) and UCSF Chimera (https:// 
www.cgl.ucsf.edu/chimera/download.html) were used to prepare 
the structures, including hydrogen addition and energy minimiza-
tion (Pettersen et al., 2004). Ledock packages that use simulated 
annealing-genetic crossover algorithm for conformational search, 
and docking scoring covers van der Waals interaction, electro-
static interaction, hydrogen bond contribution, as well as inter-
molecular and intramolecular ligands, were used to perform 
molecular docking simulations. (Liu & Xu 2019). The substrate- 
binding pocket residues were covered by the grid box (Jin et al., 
2020). The binding site of olanzapine for each receptor set 
according to the geometrical position of ligands was reported 
(Table 1) for each receptor. The optimal position (Figure 1) with 
the highest negative binding affinity was recorded once the 
docking process was completed. The superior pose with the 
appropriate binding orientation was chosen for MD simulation 
and binding free energy computation. A molecular dynamic 
simulation was used to account for the ligand-receptor com-
plex’s dynamic and solvent effects. 

A parallel version of PMEMD from the Amber 20 program 
was used to carry out the MD simulations. To generate the input 
for each receptor, we first introduced the receptor to orientations 
of proteins in membranes (OPM) server (Lomize et al., 2012; 
https://opm.phar.umich.edu/) for spatial arrangements of mem-
brane proteins concerning the hydrocarbon core of the lipid 
bilayer (Figure 1). The output of the OPM server for each recep-
tor was used to construct the MD simulation input using 
CHARMM-GUI server v 3.7 (Jo et al., 2008). In the CHARMM-GUI 
server, we used CHARMM general force field to treat the ligand 
topology file. The protein orientation was along the Z-axis in a 
rectangular box type with a water thickness of 22.5 Å. We used 

the heterogeneous lipid bilayer with ratios of lipid components 
as 2:2:1 for POPC: POPE: Cholesterol lipids. The Amber input file 
was generated using the AMBERff14SB force field surrounded by 
the OPC water model (Izadi et al., 2014). The periodic boundary 
condition (PBC) was applied in all three dimensions. The ligands’ 
force field parameters were internally converted to the GAFF 
using the CHARMM-GUI server. The system was cleared of erro-
neous interconnections using an energy reduction strategy that 
involved 2500 steepest-descent steps followed by 2500 conju-
gated-gradient stages, with the head group of lipids and the 
backbone atoms of proteins being strategically restricted. At 
303 K, a series of NVT was ensembled with a Langevin thermo-
stat for 120 ps to perform releasing of the restraints from protein 
and lipid. Likewise, a series of NPT simulations propose to use 
Berendsen barostat with semi-isotropic coupling with enabled 
surface tension in XY planes for 2 interlaces again releasing the 
restraints from protein and lipid. Long-range electrostatics were 
controlled using the particle mesh Ewald (PME) method. The 
SHAKE algorithm was used to restrict all covalent bonds, includ-
ing hydrogen atoms. A nonbonded cutoff of 9.0 Å was used, 
allowing for a 2 fs time step. The MD simulation (300 ns) was 
performed for each protein-ligand complex. 

MMPBSA/MMGBSA for entropy correction to calculate 
the complex binding free energies 

Biomolecules’ interactions with their environment determine the 
structure, dynamics, and functions of biomolecular systems. 
Explicit and implicit solvent models can simulate solvent-solute 
interactions. These models require high computing power to 
sample and model the interactions of individual atoms in water 
and solute molecules. Implicit solvent models concentrate on 
short-term performance and monitoring while attempting to 
simulate mean-field solute and solvent interactions. Implicit mod-
els function admirably and consistently in many biological appli-
cations, but they are less precise (Wang et al., 2016). A number 
of widely used implicit models are based on the Poisson- 
Boltzmann (PB) equation, which characterizes polar solvation 
interactions as classical electrostatic interactions. In this study, the 
Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) 
technique was used to predict protein-ligand binding interactions 
using PB-based solvent models, particularly when combined with 
explicit solvent. Similar to the MMPBSA method, binding affinities 
can be affected by changes in solvation, electrostatic and VDW 
interactions, and other factors (Wang et al., 2016). The molecular 
mechanics energies paired with the Poisson-Boltzmann surface 
area (MM/PBSA) or generalized Born surface area (MM/GBSA) as 
continuous solvation methods are recognized methodology for 

Table 1. Models for each protein were created using accessible crystal structures. 

Protein name PDB ID (Chains) Ligand  

5-hydroxytryptamine receptor 1 A (5HT1A) 7E2X (R), 7E2Y (R), 7E2Z (R) SRO, 9SC 
5-hydroxytryptamine receptor 2 A (5HT2A) 6A93 (A), 6A94 (B), 6WGT (A), 6WH4 (C), 6WHA (A) 89F 
5-hydroxytryptamine receptor 2B (5HT2B) 4IB4 (A), 4NC3 (A), 5TUD (A), 5TVN (A), 6DRX (A), 6DRY (A), 6DRZ (A), 6DS0 (A) H8J 
5-hydroxytryptamine receptor 2 C (5HT2C) 6BQG (A), 6BQH (A) ERM 
D(2) dopamine receptor (DRD2) 6LUQ (A), 6CM4 (A), 6VMS (R) 08Y 
Muscarinic acetylcholine receptor M1 (CHRM1) 5CXV (A), 6OIJ (R), 6WJC (A) 0HK 
Muscarinic acetylcholine receptor M2 (CHRM2) 5ZKC (A), 4MQS (A), 5ZK3 (A), 6OIK (R), 6U1N (R), 4MQT (A), 5ZK8 (A) 2CU  
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determining the binding free energy of minute ligands to bio-
logical macromolecules. 

Normal mode analysis is commonly used to calculate 
entropy (NMA). Due to their acceptable accuracy, relatively 
low computational cost, and widely applicable scopes, such 
as for small-ligand-protein systems, protein-protein systems, 
and protein–RNA/DNA systems, MM/GBSA and MM/PBSA 
have become the most popular methods for large-scale bind-
ing free energy calculations in the last decade(Chang et al., 

2016; Hou & Yu, 2007; Sun et al., 2013; VARGiu & Magistrato, 
2012; Wang et al., 2001). Entropy effects play a crucial role in 
drug-target interactions, influencing the binding affinity 
between ligands and their target proteins. However, incorpo-
rating entropy calculations, particularly through normal 
mode analysis (NMA), poses computational challenges due to 
its high computing cost. As a result, widely used end-point 
binding free energy calculation methods such as MM/GBSA 
and MM/PBSA often simplify the calculations and overlook 

Figure 1. Binding mode of olanzapine bound to the (a) 5HT1A, (b) 5HT2A, (c) 5HT2B, (d) 5HT2C, (e) DRD2, (f) CHRM1, and (g) CHRM2 obtained from docking.  

6616 P. KHANAL ET AL. 



the explicit consideration of entropic contributions to ligand- 
binding affinity. This omission is primarily due to the trade- 
off between computational cost and the lower prediction 
accuracy associated with NMA. Consequently, many applica-
tions utilizing MM/GBSA and MM/PBSA methods commonly 
disregard the entropy change associated with protein-ligand 
binding. Nonetheless, a variety of strategies have been used 
to accurately estimate entropy, ranging from post-processing 
approaches (Ben-Shalom et al., 2017; Genheden et al., 2012) 
to simulation-synchronized methodologies. For example, 
Genheden et al. demonstrated that using truncated struc-
tures for the NMA entropy calculation could be a viable strat-
egy for reducing processing costs. The same group also 
discovered that, aside from NMA, most entropy estimate 
approaches fail to converge even with very long simulation 
times i.e. 1 ms, (Genheden et al 2014; Genheden & Ryde, 
2012) limiting their practical application. The binding free 
energy was calculated using the recently established entropy 
calculation method i.e. called interaction entropy (Duan 
et al., 2016; Sun et al., 2018). The absolute binding free 
energy of a complex is computed using the MM/GBSA 
method by averaging the total gas-phase energy, solvation- 
free energy, and entropic contributions over many snapshots 
selected from the main MD trajectory. For determining the 
polar component of solvation-free energy, a grid-based sur-
face GB model is combined with a novel water model and 
atomic radii proposed earlier in. 

The absolute binding free energy, DGbind, of a ligand L to 
a biomacromolecule, such as a protein, P, creating a complex 
PL is estimated using the MM/GBSA method. It calculates 

DGbind as the free energy difference between PL (Protein- 
Ligand called Complex), P (Protein), and L (Ligand), i.e. 

DGbind ¼ G PLð Þ � G Pð Þ � G Lð Þ . . . . . . (1)  

The following sum is used to estimate each of these three 
free energies 

G ¼ Eint þ Evdw þ Eele þ Gsolv þ Gnp � TSMM . . . . . . (2)  

The first three primary points on the right-hand side of 
the energy calculation include van der Waals, electrostatic 
energies, and internal molecular mechanics (MM) contribu-
tions, which account for bonds, angles, and dihedrals. In add-
ition to these components, the final energy calculation 
incorporates the product of the absolute temperature and an 
estimated entropy term, which represents the contribution of 
molecular flexibility to the overall energy. Furthermore, the 
calculation includes terms for vibration, rotation, and transla-
tion. These factors are all calculated on a system where 
water molecules have been removed. It is important to note 
that in our simulations, we typically focus on the complex 
(PL), and the free energies of the protein (P) and ligand (L) 
are determined within the same simulation by excluding the 
coordinates of the other species (Foloppe & Hubbard, 2006; 
Swanson et al., 2004). In addition, in the present work, we 
employed MM/GBSA implemented in AmberTools22 (Case 
et al., 2022) for the binding free energy calculation. 

Clustering and energy decomposition analysis 

The clustering method is employed as a practical computa-
tional intelligence approach to effectively categorize MD 
frames into functionally homogeneous groups, enabling effi-
cient identification of distinct sets. This method utilizes a 
superficial similarity score to partition each MD frame into 
multiple groups. By considering specific factors, MD frames 
within the same group can be compared to one another. By 
applying the clustering method to our MD data, we aim to 
unveil underlying patterns and discern functionally relevant 
conformations. This enables us to gain insights into the 
dynamic behavior of the ligand-receptor complex and iden-
tify functionally distinct states or conformations. The most 
common and well-known measure of similarity is the root 
mean square deviation (RMSD) values used for sorting MD 
trajectories derived by pairwise or matrix error distances (De 
Paris et al 2015). Further, if simulation data produces a repre-
sentational structure, cluster analysis can be used to identify 
structural groups. Data points within a cluster are more com-
parable to data points outside the cluster when using clus-
tering as a data-splitting approach. Before getting solid 
results using cluster analysis, there is typically a lot of trial 
and error required. (Nikfarjam et al., 2021). The breakdown of 
residues offers information about favorable and unfavorable 
interactions, which can help to improve lead quality. This 
study looked at the Water Swap residue-by-residue binding 
energy decompositions to see which residues contributed 
the most to inhibitor binding during the MD simulation 
(Kiani et al., 2019). 

Figure 2. Categories of proteins regulated by olanzapine. Olanzapine was 
majorly identified to act on G-protein coupled receptors followed by transport-
ers including type 1 cytokine receptors, protein codes, and hormones.  

Figure 3. Association of olanzapine-regulated targets with obesity (DisGeNET 
entry: C0028754). a total of 16 (0.6%) olanzapine-modulated proteins were 
observed to overlap with obesity; C0028754.  
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Results and discussion 

Olanzapine targeted 27 proteins which were categorized 
under G-protein coupled receptor, hormones, protein codes, 
transporters and type 1 cytokine receptors including 
ADRA1A, CHRM1, CHRM2, and DRD2 . Among the regulated 
proteins, G-protein coupled receptors were majorly modu-
lated i.e. 78.125% (Figure 2). Similarly, 59.25% of the olanza-
pine-regulated proteins were in common with pre-identified 
targets for obesity concerning DisGeNET (entry: C0028754); 
Figure 3. 

Enrichment analysis of the 27 olanzapine-regulated and 
binding proteins was predicted to interact with each other 
via 118 edges with an average node degree of 8.74, an 

average local clustering coefficient of 0.715, expected edge 
count of11 with a p-value of 1.0e-16 (Figure 4). 

The olanzapine-regulated protein interaction-associated 
gene ontology terms were observed to link with KEGG path-
ways via the common involvement of 23 genes affecting a 
total effect of 76.7% (Figure 5). Gene ontology analysis pre-
dicted Cholinergic Receptor Muscarinic 2 (CHRM2) to be 
chiefly modulated by 18 gene ontology terms of a cellular 
component. In this, the integral component of the plasma 
membrane (GO:0005887) was chiefly modulated by regulat-
ing 23 genes against 1564 background proteins at the 
strength and false discovery rate of 1.03 and 1.16E-19 
respectively (supplementary file; sheet 1). Likewise, in the 
molecular function, dopamine receptor D2 (DRD2) was 

Figure 4. Protein-protein interaction of olanzapine-modulated targets. Node color; colored nodes: query proteins and first shell of interactors, white 

nodes: second shell of interactors, Node content; empty nodes: proteins of unknown 3D structure, filled nodes: some 3D structure is known or pre-

dicted, Known Interactions; from curated databases, experimentally determined, Predicted Interactions; gene neighborhood, 

gene fusions, gene co-occurrence & Others; text mining, co-expression, protein homology.  
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primarily modulated within 15 gene ontology molecular 
functions. Within it, G protein-coupled amine receptor activ-
ity (GO:0008227) was chiefly modulated via the regulation of 
16 genes against 48 background proteins at the strength 
and false discovery rate of 2.38 and 4.74E-32 respectively 
(supplementary file; sheet 2). Also, in the KEGG analysis, 
dopamine receptor D1 (DRD1) was chiefly modulated associ-
ating with 9 different pathways. In this regard, neuroactive 
ligand-receptor interaction (hsa04080) was primarily modu-
lated via the regulation of 21 genes against 272 background 
proteins at the strength and false discovery rate of 1.75 and 
2.23E-32 respectively (supplementary file; sheet 3). Further, 

for biological processes, dopamine receptor D2 (DRD2) was 
chiefly modulated within 232 biological processes. Also, G 
protein-coupled receptor signaling pathway, coupled to cyc-
lic nucleotide second messenger (GO:0007187) was identified 
as a primarily modulated biological process via the regula-
tion of 16 genes against 206 background proteins at the 
strength and false discovery rates at 1.75 and 7.48E-22 
respectively (supplementary file; sheet 4). The top 20 gene 
ontology terms for molecular function, biological processes, 
cellular components, and regulated KEGG pathways are pre-
sented in Figure 6. Also, it was observed that olanzapine- 
regulated pathways modulate other secondary pathways in 
which Neuroactive ligand-receptor interaction was identified 
to be interlinked with maximum pathways (Figure 7). 

The docking study pointed the propensity of the olanza-
pine ligand to be found in the active site of various protein 
targets. The selectivity of the ligand chosen for binding at 
the M2 receptor active site was higher than that of other 
structures (Table 2), and the M1 receptor structure was asso-
ciated with the lowest affinity for binding. Utilizing molecular 
dynamics simulations, it was further examined how the lig-
and is situated at the active site of every protein structure 
under study. 

The olanzapine obtained from the last step of the screen-
ing from the docking step was further studied by MD simula-
tion. The lack of suitable protein sampling, ligand validation, 
and scoring procedures limits the precision of the binding 
energies acquired from molecular docking investigations. 
Considering multiple challenges such as insufficient protein 
sampling, ligand validation, and scoring functions to pre-
cisely assess binding energy, the data from molecular dock-
ing using more precise approaches should be evaluated. 
Binding scoring functions still need to regain their capacity 

Figure 5. Interlinkage of cellular components, molecular function, biological 
processes, and KEGG pathways concerning pharmacological spectra of olanza-
pine-triggered proteins. MF: molecular function, CC: cellular components, BP: 
Biological processes, KEGG: Kyoto Encyclopedia of Genes and Genomes 
pathways.  

Figure 6. Gene ontology analysis of olanzapine-modulated targets.  
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to rate binding and estimate free binding energies despite 
several attempts to improve their performance. 

MM/PBSA and MM/GBSA are two methods that combine 
molecular mechanic energy and an implicit solvent model 
which are used  in recognizing and ranking the accurate 
binding poses and ranking the inhibitors for specific targets 
(Nikfarjam et al., 2021; Shahraki et al., 2018). In this analysis, 
the best pose of olanzapine was simulated (300 ns) on the 7 
selected targets. To calculate the MM-GB/PBSA binding 
energy, 1000 snapshots of MD pathways were obtained. 
Onufriev and Case created the modified GB model (igb ¼ 5 
dubbed GBOBC1) utilized in the GB calculations based on 
extensive tests and more agreement with the PB treatment 

in calculating the electrostatic part of the solvation energy. 
The dielectric constant of the solute was fixed to one (Feig 
et al., 2004). As indicated the soltcon value was set to 0.15 M 
to reconcile the PB and GB solvation energies (Srinivasan et 
al., 1999). 

The MM-PBSA/GBSA was calculated in the same way as 
presented in Table 3. By measuring solvent-free energies 
using the PB implicit solvent system, the non-polar solvent 
concept was obtained based on the solvent-accessible sur-
face area (SASA) (Srinivasan et al 1999). To calculate the 
MM-PBSA binding energies of the ligands, the istrng was 
set to 15 mM, radiopt was set to 0, fillratio was set to 1.5, 
and the indi parameter was set to 4. The entropy was deter-
mined using the Amber nmode module using the 10 frames 
of MD simulation. These calculations incorporated a portion 
of the ligand from the previous snapshot. 

The free energy generated from this procedure is sum-
marized (Table 3). It’s also worth noting that the data gath-
ered through this approach converges statistically. For this 
category of ligands, the overall standard error is estimated to 
be around 1 kcal/mol. The classification of ligands has pro-
vided a more detailed picture. Given that the results 

Figure 7. Olanzapine-regulated protein(s) interaction(s) with respective pathways. In the above interaction, the node size is directly proportional to the edge 
count.  

Table 2. Docking of olanzapine ligand and selected receptors. 

Receptor Binding affinity (kcal/mol)  

5HT1A   � 5.24 
5HT2A   � 5.32 
5HT2B   � 4.99 
5HT2C   � 5.58 
M1   � 4.58 
M2   � 5.79 
D2   � 4.97  
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obtained from free energy are presented with entropy cor-
rection (Table 3). It can be seen that the tendency to bind 
olanzapine with two targets i.e. 5HT2C and M1 receptors was 
more than in other structures. This result will be discussed 
by further analysis. 

The ligand binding efficacy to the receptor was evaluated 
using MD simulations. Various structural analysis methods, 
such as RMSD, decomposition analysis, and hydrogen bond 
assessment, were employed to characterize each ligand-pro-
tein interaction pattern. To estimate the ligand stability re- 
scoring, a 300 ns MD study was conducted using the 
MMPBSA method. 

The RMSD profiles of the seven selected ligand-protein 
backbones (up) and specifically highlights the behavior of 
olanzapine (down) during the 300 ns MD simulation are illus-
trated (Figure 8). The corresponding findings provide insights 
into the ligand docking performance and reveals that olanza-
pine exhibits greater positional changes when bound to 
5HT2B, followed by 5HT1A and 5HT2A receptors. These con-
formational changes allow the ligand to explore more favor-
able positions, potentially altering the ranking of binding 
energies obtained from the MMPBSA method (Table 3) com-
pared to the initial docking analysis (Table 2). By elucidating 
the dynamic behavior of olanzapine and its influence on 
binding energy calculations, our study highlights the impor-
tance of considering protein stability in the presence of 
determinant compounds contributing to a better under-
standing of ligand-receptor interactions. 

The hydrogen-bonding pattern for olanzapine with targets 
was also identified using hydrogen bonding analyses. Various 
portions of the ligand have formed a relative hydrogen bond 

Table 3. Binding free energy of olanzapine bound to the GPCR receptors in the study.  

5HT1A 5HT2A 5HT2B 5HT2C D2 M1 M2  

DEVDW   � 39.43 ± 0.20   � 32.30 ± 0.09   � 44.00 ± 0.13   � 40.27 ± 0.10   � 28.90 ± 0.12   � 46.39 ± 010   � 36.88 ± 010 
DEele   � 0.18 ± 0.20   � 5.97 ± 0.09   � 8.04 ± 0.13   � 5.07 ± 0.10   � 3.92 ± 0.12   � 3.17 ± 010   � 8.02 ± 010 
DEPB   37.30 ± 0.20   23.48 ± 0.09   34.61 ± 0.13   28.92 ± 0.10   18.71 ± 0.12   26.95 ± 010   24.28 ± 010 
DENP   � 3.86 ± 0.20   � 3.84 ± 0.09   � 3.96 ± 0.13   � 4.02 ± 0.10   � 3.14 ± 0.12   � 3.97 ± 010   � 3.39 ± 010 
DGsolv   33.42 ± 0.20   19.64 ± 0.09   30.65 ± 0.13   24.89 ± 0.10   15.56 ± 0.12   22.97 ± 010   20.88 ± 010 
DGgas   � 39.62 ± 0.20   � 38.27 ± 0.09   � 52.05 ± 0.13   � 45.35 ± 0.10   � 32.82 ± 0.12   � 49.56 ± 010   � 44.91 ± 010 
DGBind   26.18 ± 0.20   218.63 ± 0.09   221.39 ± 0.13   220.46 ± 0.10   217.26 ± 0.12   225.58 ± 010   224.02 ± 0.10 
DEVDW   � 39.43 ± 0.16   � 32.30 ± 0.07   � 44.00 ± 0.11   � 40.27 ± 0.10   � 28.90 ± 0.13   � 46.39 ± 0.08   � 36.88 ± 0.12 
DEelec   � 0.18 ± 0.16   � 5.97 ± 0.07   � 8.04 ± 0.11   � 5.07 ± 0.10   � 3.92 ± 0.13   � 3.17 ± 0.08   � 8.02 ± 0.12 
DEGB   23.50 ± 0.16   24.45 ± 0.07   16.66 ± 0.11   13.12 ± 0.10   15.82 ± 0.13   20.75 ± 0.08   18.90 ± 0.12 
DESurf   � 4.61 ± 0.16   � 4.16 ± 0.07   � 5.34 ± 0.11   � 5.07 ± 0.10   � 3.84 ± 0.13   � 5.24 ± 0.08   � 3.82 ± 0.12 
DGsolv   18.88 ± 0.16   20.29 ± 0.07   11.32 ± 0.11   8.04 ± 0.10   12.28 ± 0.13   15.51 ± 0.08   15.08 ± 0.12 
DGgas   � 39.62 ± 0.16   � 38.27 ± 0.07   � 52.04 ± 0.11   � 45.35 ± 0.10   � 32.82 ± 0.13   � 49.56 ± 0.08   � 44.91 ± 0.12 
DGBind   220.73 ± 0.16   217.98 ± 0.07   240.71 ± 0.11   237.30 ± 0.10   220.54 ± 0.13   234.05 ± 0.08   229.83 ± 0.12 
TDStotal   � 16.73 ± 3.10   � 16.42 ± 3.07   � 18.29 ± 1.59   � 20.06 ± 1.07   � 16.96 ± 3.20   � 18.66 ± 1.20.   � 17.57 ± 1.70 
DGBind,Entropy   23.93 ± 10.50   21.56 ± 8.23   222.95 ± 6.49   216.81 ± 4.43   23.97 ± 11.18   215.66 ± 4.21   211.52 ± 6.93  

Figure 8. RMSD Plots of protein backbone atoms of seven selected targets (up) 
and olanzapine (down) during 300 ns MD simulation.  

Table 4. Analysis of hydrogen bond formation between olanzapine and 
selected targets. 

Targets Acceptor Donor-H Donor Fraction Distance    

5HT1A ASP82-O OLZ-H13 OLZ-N5   0.0303   2.9 
ASP82-OD2 OLZ-H13 OLZ-N5   0.0103   2.9 
ASP82-OD1 OLZ-H13 OLZ-N5   0.009   2.9 

OLZ-N3 LYS156-HZ2 LYS156-NZ   0.005   2.86 
OLZ-N3 LYS156-HZ3 LYS156-NZ   0.005   2.86 
OLZ-N3 LYS156-HZ1 LYS156-NZ   0.0023   2.89   

5HT2A OLZ-N5 LEU155-HN LEU155-N   0.0007   2.92 
ASP84-OD2 OLZ-H13 OLZ-N5   0.0007   2.92   

5HT2B ASP109-OD1 OLZ-H13 OLZ-N5   0.0037   2.87 
ASP109-OD2 OLZ-H13 OLZ-N5   0.0023   2.86 

OLZ-N4 ASN356-HD21 ASN356-ND2   0.002   2.95   
5HT2C ASP109-OD1 OLZ-H13 OLZ-N5   0.0037   2.87 

ASP109-OD2 OLZ-H13 OLZ-N5   0.0023   2.86 
OLZ-N4 ASN356-HD21 ASN356-ND2   0.002   2.95 

M1 OLZ-N4 TYR249-HH TYR249-OH   0.005   2.89 
OLZ-N3 ASN250-HD21 ASN250-ND2   0.0007   2.91 
OLZ-N2 TYR249-HH TYR249-OH   0.0007   2.98 

M2 PHE164-O OLZ-H13 OLZ-N5   0.0963   2.9 
ILE161-O OLZ-H13 OLZ-N5   0.037   2.88 
OLZ-N4 ASN390-HD21 ASN390-ND2   0.0153   2.941 
OLZ-N2 ASN390-HD21 ASN390-ND2   0.0047   2.94 

D2 OLZ-N3 ARG70-HH11 ARG70-NH1   0.023   2.89 
TYR362-OH OLZ-H13 OLZ-N5   0.0033   2.9 
ASP79-OD2 OLZ-H13 OLZ-N5   0.002   2.95 
ASP79-OD1 OLZ-H13 OLZ-N5   0.0013   2.87 

ARG70-O OLZ-H13 OLZ-N5   0.0013   2.92  
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with the residues Asp82 and Lys156 with the 5HT1A receptor 
(Table 4). Residues Asp109, Asn356, and Tyr382 have played 
an important role in the study of hydrogen bond analysis 
related to the structure of the 5HT2B receptor. Important res-
idues related to this analysis concerning the structure of the 
5HT2C include Asp120 and Ser124. Similarly, Tyr249 and 
Asn250 are significant residues in the M1 structure. 
Additionally, the structure of M2 facilitates the discovery of 
more efficient residues, such as Phe164, Ile161, and Asn390. 
The dopamine D2 receptor structure was effectively influ-
enced by the residues Arg70, Tyr362, and Asp79. Because of 
the crucial residues in each target active site, it is apparent 
that the structures in hydrogen bond analyses revealed cru-
cial hydrogen interactions with the olanzapine. 

Further, we examined the decomposition analysis related 
to the complex of each target with olanzapine. Examining 
the analysis related to the target 5HT1A (Figure 9) it can be 
observed that the residues Arg31, Arg205, and Arg300 have 
the highest amount of total energy. Taking a closer look, we 
observed that the important electrostatic and van der Waals 
interactions related to residues Arg141, Arg146, and Gln396 
were higher than other residues. Examining this analysis for 
the 5HT2A structure (Figure 9), we observed that residues 
Arg69, Arg101, and Arg318 had a high share of total energy. 
This was in the contribution of electrostatic and van der 

Waals interactions related to residue Arg201. Important resi-
dues in relation to the 5HT2B target were Arg126, Arg186, 
Arg254, and Arg405. The range of relevant residues included 
Arg110, Arg137, Arg179, Arg263, Arg326, and Arg418 in 
5HT2C played a key part in the van der Waals and electro-
static interactions. Even if some residues in the dopamine D2 
receptor may not have the ideal level of electrostatic energy, 
van der Waals and other crucial interactions have made a siz-
able contribution. For this reason, in addition to residues of 
Arg70, Arg255, and Arg257; have total optimal energy, resi-
dues of Arg184, Arg187, Arg192, and Arg317 also had a sig-
nificant share of intermolecular interactions. The study of 
decomposition analysis related to the structure of M1 
showed that residues Arg103, Arg151, Arg190, Arg193, 
Arg294, and Arg304 could have played an effective role in 
total energy followed by detailed interactions. Similarly, M2 
structure residues Arg36, Arg152, and Arg248 had a signifi-
cant role in creating a proper interaction with the selected 
ligand (Figure 9). The significance of this approach was to 
consider if the olanzapine ligand locates in the protein’s 
active site or not during 300 ns of molecular dynamics simu-
lations. It can be confirmed that the target was appropriate 
for the investigated ligand if the ligand is more thoroughly 
positioned at the active regions of proteins by forming more 
stable connections with more residues. 

Figure 9. Energy decomposition analysis for the complexes between olanzapine with (a) 5HT1A, (b) 5HT2A, (c) 5HT2B, (d) 5HT2C, (e) DRD2, (f) CHRM1, and (g) 
CHRM2 through 300 ns molecular dynamics simulation.  
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Likewise, in cluster analysis, we investigated how the lig-
and is located in the active site of the proteins and interacts 
with important residues after 300 ns molecular dynamics sim-
ulations. In the complex related to olanzapine ligand and 
5HT1A (Figure 10) residue Asp82 with hydrogen bond inter-
action (as also observed in hydrogen bond analysis), and salt 
bridge, including Trp319, Phe322, Asn346, and Tyr350 had 
effective hydrophobic interactions with different parts of the 
ligand. Concerning the ligand being in the active site of the 
5HT2A structure, these interactions involve residues Asp158, 
which forms a hydrogen bond with water and bridges the 
water between the residue and the ligand, and Ile81, which 
interacts with the ligand in a hydrophobic way. 

It is important to form a hydrogen bond with water and 
bridge the water between the residue and the ligand to pro-
vide the residues Ser113, Val117, Phe352, Trp349, and 
Leu374 essential hydrophobic interactions in complex with 
the target 5HT2B. As shown in Figure 10, the green lines 
depict pi-pi stacking and important interactions. When olan-
zapine is present in the active site of 5HT2C, certain hydro-
phobic interactions between the residues; Val121, Leu193, 

Ala206, Phe361, and Phe362 can be observed (Figure 10). 
Following and reviewing this analysis, residues from the 
dopamine D2 receptor structure thathad a clear interaction 
with the selected ligand; was a hydrophobic interaction with 
Trp66, a salt bridge between the selected ligand and Glu61, 
and finally, a hydrogen bond with water, bridging the water 
between the Ser363 and the ligand. 

Several crucial residues interacted with the ligand in the 
active sites of the targets M1 and M2; depicted in Figure 10. 
. Hydrophobic interactions related to residues Tyr86, Trp137, 
Ala173, Phe177, and Tyr272 were related to target M1. In 
addition, hydrophobic interactions between Tyr160, Phe164, 
Val387, Asn390, and Trp402 including hydrogen bonds with 
Asn390 and Phe164 were observed with M2 (Figure 10). 

Moreover, the safety limitations of the typical antipsy-
chotics i.e. extrapyramidal syndromes, atypical antipsychotics 
have played an important role in the management of psychi-
atric illness and clinical psychopharmacology; olanzapine is 
one of the most common atypical anti-psychotics which has 
an important role in managing various psychiatric illnesses 
including major depression and schizophrenia; however, is 

Figure 10. Ligand interactions of olanzapine and representative structure of (a) 5HT1A, (b) 5HT2A, (c) 5HT2B, (d) 5HT2C, (e) DRD2, (f) CHRM1, and (g) CHRM2 
obtained from cluster analysis.  
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associated with metabolic disorders (Li et al., 2019). Among 
them, olanzapine-induced weight gain has been recorded as 
a critical observation in subjects under the pharmacotherapy 
of olanzapine (Guha et al., 2005) which is also demonstrated 
in an experimental animal model of rats (Fernø et al., 2011; 
Li et al., 2019; Ullagaddi et al., 2021) and zebrafish (Khanal 
et al., 2020). 

The management of psychiatric illness with olanzapine- 
pharmacotherapy is based on its antagonistic effect on vari-
ous G-protein coupled receptors i.e. dopamine 2 receptors 
followed by multiple subunits of adrenergic and serotonin 
receptors including histamine (Olanzapine; https://go.drug-
bank.com/drugs/DB00334). These surface G-protein coupled 
receptors are predominantly available at the satiety center 
and are involved in the regulation of appetite and homeo-
static energy expenditure (Avena & Rada, 2012; Cassidy & 
Tong, 2017; Provensi et al., 2016; Voigt & Fink, 2015). Also, a 
record has been made for the antagonistic effect of olanza-
pine over histamine, serotonin, and muscarinic receptor 
(Olanzapine; https://go.drugbank.com/drugs/DB00334). 
Supporting previous reports, in the present study, we 
observed, that the majority of the receptors modulated by 
olanzapine were under the category of the G-protein 
coupled receptor majorly targeting the serotonin, histamine, 
adrenergic, and muscarinic receptor subunits. This observa-
tion suggests that olanzapine-induced hyperphagia could be 

associated with the antagonistic effect of the olanzapine 
over the various neurotransmitter synapses which are also 
supported via the regulation of neuroactive ligand-receptor 
interaction as it represents the variety of signaling molecules 
including many types of neuroreceptor. Also, the regulation 
of food consumption is regulated via taste transduction 
which is managed by the reward and feeding center which 
is closely associated with the dopamine regulatory system 
(Volkow et al., 2011). In the present study, we observed the 
regulation of the dopamine synapse which may have con-
tributed to the taste transduction as identified in the present 
study. 

Another theory for olanzapine-induced weight gain 
includes the concept of compromised energy expenditure 
which is demonstrated in various animal models via loco-
motor activity (Ullagaddi et al., 2021). The energy expend-
iture in homeostasis is regulated by multiple pathways like 
cGMP-PKG (Francis et al., 2010), PI3K-Akt (Lin et al., 2010), 
and AMPK (Hardie et al., 2012) signaling pathways. In olanza-
pine-induced obesity, previously it has been commented 
that the deposition of the white adipose tissue increased 
(Babic et al., 2021). One of the studies suggested that the 
upregulation of the cGMP level promotes the development 
of the brown adipose tissue to dissipate the energy as non- 
severing thermogenesis (Pfeifer et al., 2013). In the present 
study, we observed the regulation of the cGMP pathway via 

Figure 11. Network of olanzapine-modulated pathways with secondary pathways. serotonergic synapse; hsa04726, gap junction; hsa04540, alcoholism; hsa05034, 
amphetamine addiction; hsa05031, taste transduction; hsa04742, cGMP-PKG signaling pathway; hsa04022, inflammatory mediator regulation of TRP channels; 
hsa04750, cholinergic synapse; hsa04725, cocaine addiction; hsa05030, salivary secretion; hsa04970, neuroactive ligand-receptor interaction; hsa04080, AMPK sig-
naling pathway; hsa04152, and vascular smooth muscle contraction hsa04270 were not networked with any secondary pathways.  
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the combined interaction of the olanzapine-regulated targets 
triggered by muscarinic 1 and 2, dopamine 1 and 2, and 
serotonin 1 subunit receptors. Thus, it can be further specu-
lated that high deposition of the free fatty acids and white 
fat deposition in olanzapine-induced obesity could be cGMP- 
PKG-mediated. 

Mild hyperglycaemic state and elevated blood pressure 
have been reported in subjects under the long-term pharma-
cotherapy of olanzapine which is also demonstrated in the 
experimental animal models (Patil et al., 2006). Previously, 
archetype cAMP has been considered as a vital cellular signaling 
molecule to regulate the glucagon and insulin secretion from 
pancreatic a-and b-cells respectively; is considered as an ampli-
fier of insulin secretion triggered via the Ca2þ in b-cells 
(Tengholm & Gylfe, 2017). Also, the antagonistic effect of olanza-
pine over the adrenergic, muscarinic, serotonin, and dopamine 
receptors may downregulate the calcium signaling pathway 
(KEGG entry: hsa04020) and alter the secretion of insulin from 
pancreatic b-cells as observed in the present study. Likewise, 
cAMP signaling-mediated downstream of cAMP has been 
reported for vasoconstriction in spontaneously hypertensive rats 
(Berg et al., 2009). Hence, reported the mild hyperglycaemic and 
hypertensive state with olanzapine treatment (Patil et al., 2006) 
could be due to cAMP pathway mediated; triggered via the 
regulation of HTR6, CHRM1, HTR1A, DRD2, DRD1, CHRM2. 

PI3K-Akt signaling pathway has been well documented for 
the upregulation of the lipid biosynthesis and downregula-
tion of lipolysis which is regulated by SREBP; regulator of 
fatty acid synthase and FOXO1; regulates the expression of 
the adipose triglyceride lipase, are considered as the sub-
strates for AKT-metabolism (Huang et al., 2018). Additionally, 
b-adrenergic signaling upregulates acute lipolysis with cAMP 
accumulation (Mottillo & Granneman, 2011) which was pre-
dicted to be affected by the olanzapine as discussed above. 
In the present findings, olanzapine was identified to act over 
the prolactin and muscarinic 1 and 2 receptors and alter the 
function of the PI3K-Akt pathway; this could be the reason 
for a dyslipidaemic profile in olanzapine-associated weight 
gain. The modulation of thermogenesis in adipose tissue has 
been used to pinpoint the AMPK signaling pathway as the 
controlling mechanism of energy metabolism. Also, it regu-
lates the browning process of inguinal white adipose tissue 
and maintains energy homeostasis (Wu et al., 2018). The 
homeostatic function of the AMPK signaling pathway, which 
may have been activated by the ADRA1A and ADIPOQ and 
affect the thermogenic regulation of energy expenditure, 
was impacted in the current study. 

In addition, three gene ontology terms i.e. molecular func-
tion, biological process, and cellular components define how 
the combinatorial interactions of numerous proteins are 
regulated by a single substance or multiple compounds. This 
complex effect could act over the multiple proteins/genes 
and trigger the multiple pathways for various pharmaco-
logical spectra and regulate multiple secondary pathways 
(Figure 11) which needs to be further investigated. However, 
based on the assessment of the combined action of the 
regulated proteins and pathways, it can be predicted that 
olanzapine can act over the multiple proteins preferably G- 

protein coupled receptors, affect the synapse of the multiple 
receptors and upregulate the feeding center and inhibit the 
thermogenesis via its action over cGMP-PKG, cAMP, and 
PI3K-Akt signaling pathway and taste transduction. 

Conclusion 

The present study utilized the multiple system biology tools 
to investigate the olanzapine-induced metabolic pathways 
that are primarily involved in glucose and lipid homeostasis 
which identified the deregulation of the multiple synapse 
and cGMP-PKG, cAMP, and PI3K-Akt signaling pathway. In 
addition, the binding affinity of the olanzapine ligand with 
different surface proteins was discussed. After performing 
300 ns molecular dynamics simulations and various analyses, 
the amount of binding energy was used to achieve the free 
energy from the MMPBSA/MMGBSA process, which was an 
accurate ligand rating methodology. To evaluate the meta-
bolic pathways linked to the weight gain associated with 
olanzapine, an appropriate wet lab experiment is required to 
validate the findings of the current investigation with a focus 
on reported synapses followed by cGMP-PKG, cAMP, and 
PI3K-Akt signaling pathways. 
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